

Introduction:

In our recal life situation we deal with Physical quantities such as distance, speed, temperature, Volume etc. These quantities are sufficient to describe change of position, nate of change of position, body temperature or temperature of a ceretain place and space occupied d in a confined portion respectively.

We have also come acress physical quantities such as displacement, velocity, acculuration, momentum etc, which are of different type in comparison to above.

Consider the figure -1, where A, B, Carle at a distance 4Km from P. If we Start from P, then covering 4Km 4KN distance is not sufficient to describe the destination where we reach after the travel, So here the end point plays an important role giving rise the need of direction. So we need to

1

Study about direction of a quantity, along with magnitude.

Objective

After completion of the topic you are able to:-

- (1) Define and distinguish between scalars and vectors.
- (ii) Reprusent a vector as diructed line segment.
- (iii) classify vectors in to different types.
- (iv) Resolve vector along two or three manually perpendicular aves.
- (N) Define dot product of two vectors and explain its geometrical meaning.
- (vi) Define cruss product of two vectors and apply it to find area of treiangle and pareallelogram.

Scalaris and Vectoris

All the physical quantities can be divided into two types (i) Scalar quantity or Scalar

(ii) Vector quantity or vector

Scalar quantity: - The physical quantities which require Only magnitude fore its complete specification is called as Scalar quantities.

Examples: Speed, mass, distance, velocity, volume etc.

Vector: - A directed line segment is called as vector.

Vector quantities: A physical quantity which requires both magnitude & direction for its complete Specification and satisfies the law of vectors addition is called as vectors quantities.

Examples :- Displacement, Force, acceleration, velocity, momentum etc.

Representation of Vectors : A vector is directed line Segment AB where A is the unitial point and B is the terminal point and direction is from A to B. (See Fig-2) Similarly BA is a directed line A Fig-2 which represents a vector having Fig-2 initial point Band Terminal A. A B

Fig-3 Notation: A vector quantity is always represented by an annow (-4) marck over it on by barch) over it. For example \overrightarrow{AB} . It is also supresented by a single small letter with an annow on bar mark over it. For example \overrightarrow{AB} . Magnitude of $\overrightarrow{AB} = |\overrightarrow{AB}| = \text{Length AB} = AB$.

Types of Vector :- Vectors are following types M Null Vector on Zeno Vellon On Void Vector - A Vector having zono magnitude and architarcy direction is called as a null vector and is denoted by D'. cleanly, a null vector has no definite direction. If a' = AB', then a' is a null (or zero) verton if |a|= D 1.e. 16 [AB]=0 (2) Proper vectore - Any non zerro vector is called as a proper vector. If | a | f D then a is a proper vector. (3) Unit vectore - A vectore whose magnitude & unity is called a unit vector. Unit vectors are denoted by a Small letter 'over it. For example à. |à|=1. Note: The unit vector along the direction of a Vector à is given by

(M) Co-initial vectors: Vectors having the same initial point are called co-initial vector. A

In figure-4, OA, OB, OC, OD and OE are co-initial vectors.

(5) Like and Unlike Vectors: Vectors are said to be like if they have same direction and unlike if they have opposite direction.

61 Co-Lineau Vectoris: - Vectoris and said to be Colinear or parallel if they have the same line OF action. In Figure - 5 AB and BC are co-linear. Fig 5 71 Panallel Vectoris: - Vectoris arce said to be parallel if they have same line of action ore have line of action parallel to one another . In Fig -6 the vectory are parallel to each other. Fig 6 67 Co-planner Vectors: Vectors arce said to be co-planner if they a lies on the same plane. In fig-7 vector à, b and c' our coplanner. 9) Negative of a Vector: - A vector having Fig.7 Same magnitude but opposite in direction to that of a given vector is called negative vector of that vector. If at is any vector then Fig-8. negative vectors of it is written as - à and |a| = |-à| but both have direction opposite! to each other as shown in Fig-8. 10/ Equal Vectors: - Two vectores are said to be equal if they have same magnitude as well as same diruction. Thus a' = b' Notes :- Two vectors can not be equal (i) If they have different magnitude (ii) If they have unclined supports (iii) If they have different Sense.

Vector operations Addition of vectors: -

F

Triangle Law of vector addition: - The law states that if two vectors are supresented by the two sides of a triangle taken in same order their sum or resultant is supresented by the 3" side of the triangle with direction in superse order.

B As shown in Figure-10 2 and 5 are 2+5 two vectors represented by two ち Sifes of and AB of a dringle え ABC in same on der. Then the Sum 2+5 is represented by Fig-10 The Ahind side OB tasken in revense orden. i.e. the vector à is represented by the finected Segment of and the vector B Be the fine ded segment AB, So that the denninal point A of a is the inidial point of F. Then of represents the that the denninal OSum (on resultant) (a+5). Thus OB = a+5 Note-1- The medhod of Brawing of dringle in order do difine the rector sum (2+3) is called thiangle law of addition of the yestons. Note-2-Since any side of a Iniangle is less than the Sum of the other two sides [0B] + [AB] Panallelognam Law of vector addition-If a and to ane two vectors Represended by dwo adjacand side of a paraddelognam in a magnitude 2 x 20 6 and finection, then their saint (nesulflam) is represented in magnidude and direction by the o à A diagonal which is passing through the common inidial point of the dwo fig - 11 orectors. As Shown in fig-11 if OA is a and AB is & other OB diagonal represent at 5 OB

1.e. a + b = 0A + AB

Polygon law of vector addition: - If d, B, t and d are the four sides of a polygon in the same order then their sum is represented by the last side of the polygon taken in opposite order as shown in Fig-12.

Subtraction of two Vectors

If \vec{a} and \vec{b}' are two given vectors then the subtraction of \vec{b} broom \vec{a}' denoted by $\vec{a} - \vec{b}'$ is defined as addition of $-\vec{b}$ with \vec{a} . i.e., $\vec{a} - \vec{b}' = \vec{a} + (-\vec{b})$

Properties of vector addition:-

- (i) Vector addition is commutative i.e., if a' & B are any two vectors then at B = B + a
- (ii) verotori addition is associative i.e., if d, b', c' are any three vectoris then (a'+b)+c'= d+(b+i)
- (iii) Existence of additive identity i.e., for any vector a, of is the additive identity i.e., O'ta = atb = a where of is a mull vector.
- (iv) Enistence of additive enverse: If d'is any non-zero vector then - d'is the additive inverse of d'so that d'+(-d')=fa) + d'= d'

Multiplication of a vectore by a scalar

IF a is a vector and K is a mon-zoro scalar then the multiplication of the vector of by the scalar K is a vector denoted by Kar or a K whose magnitude [K] times that of a.

The diruction of Kä is same as that of a if Kis positive and opposite as that of a if K is negative. Kå and a are always parallel to each other.

Properties of scalar multiplication of Vectors: IF h and K are scalars and \vec{d} and \vec{b} are given vectors then (i) K $(\vec{a} + \vec{b}) = K\vec{a} + K\vec{b}$ (ii) $(h + K)\vec{a} = h\vec{a} + K\vec{a}$, (Distributive law) (iii) $(hK)\vec{a} = h(K\vec{a})$, (Associative law) (iv) $1.\vec{a} = \vec{a}$ (v) $0.\vec{a} = \vec{b}$.

the second is him to be

Position vector of a point

Let 0 be a fixed point canned origin, let p be any other Point, then the vector \overrightarrow{OP} is earled position vector Of the point P relative to 0 and is denoted by \overrightarrow{P} . As shown in figure - 13, let AB be any vector, then applying triangle law of addition we 0 have $\overrightarrow{OR} + \overrightarrow{AB} = \overrightarrow{OB}$, where $\overrightarrow{OR} = \overrightarrow{B} = \overrightarrow{D}$ $= \overrightarrow{a}$ and $\overrightarrow{OB} = \overrightarrow{b} = \rightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{b} - \overrightarrow{a}$

= (Position vector of B) - (Position vector of A) Section Formula: - Let A and B $A \stackrel{\text{m}}{\text{pn}} \stackrel{\text{pn}}{\text{pn}} \stackrel{\text{B}}{\text{be}}$ be two points, with position Vector a and b respectively and P be a point on line segment AB, dividing et in the reation m:n. intermally. Then the position vector of p i.e. \overrightarrow{rt} is given by the formula: $\overrightarrow{rt} = \stackrel{\text{mb}}{\underbrace{mt}} + n\overrightarrow{a}$

If P divides AB externally in the reation: n then $\overrightarrow{rt} = \overrightarrow{mb} - \overrightarrow{na}$ $\overrightarrow{m-n}$

If p is the midpoint of AB then $\vec{r} = \vec{a} + \vec{b}$ Example -1 :- prove that by vector A(a) method the medicans of a triangle arre concurrent. E F 2 Solution: - Let ABC be a triangle where a, B and I are the 1 position vector of A, B and C B(B) D cil ruespectively. We have to show Fig-15 that the medians of thes truengle arre concuerment.

Let AD, BE and CF are the three medians of the triedingle. Now as D be the midpoint of BC, So position vectore of D i.e. d. b+c Let GI be any point of the median AD which divides AD in the taxio 2:1. Then position ve doc of G is given by q= 2a+a 2(5+2)+12 2+1 1 C by applying section formula) atb+c 10 A 9 A 9 1 -3 arilling atas a but - showing the bird rvl (r) its war which a start of nois of han's and water of 111 N 0324701 ndi. a. alt. Altomorphist. A 23 Jr. 201 C Graver -One with soft. A 1-181 Charles Jirobin a Heat presentation and probability fight and the - a- 41 is the say, but this plan of a set a andary put have apping at the sen RE-Shared in the out those will be and · DOM IN THE STORE Assessed in a state part Bills many B. Barriell. and show Show is based woll such a whole stars principle and - 1 2051

Let 4 be point which divides BE in the matrix 2:1 Posétéon vector of E is d' = atte. Then position vertor of a is given by $\vec{q}' = \underline{a}\vec{e}+\vec{b} = 2\vec{a}\vec{r}$ \vec{z} \vec{z} $\vec{q}' = \underline{a}\vec{e}+\vec{b}$ \vec{z} \vec{z} posetion vector of a point is unique, so G = G' AS similarly gt we take g" be a point on cf dividing it in 2:1 matio then the posethon vector of a" will be same as that of G. Hence G is the one point where three median meet. .: The three Medians of a triangle are concurrent. (proved) Example 2: prove that (i) [a+b] (a) this (it is known as triangle roequality. $(\tilde{u})[\tilde{a}]-\tilde{b}] \leq [\tilde{a}-\tilde{b}]$ (iii) | a - b | 4 | a | + b | Proob: - Let 0, A and B be three Polorts, which cere not collinear and then draw a triangle OAD. Let on = a, AB = b, then by triangle Law of addition B we have $\vec{oB} = \vec{a} + \vec{b}$ 10 10 from properties of triangle we know that the sum of any two sides of a triangle is greater than the third side. A F89 - 16 => OBLOA+AG = 10B (LIOAI + (AB) き (マナレ) 4マリ +レン ---- (1)) when O, A, B are collinear then from fig-17 31 is clear that OB = OA + AB 1 => 10B1 = 10A1 + 1AB1 シ (マ+レ) = ロン サレ) - ----(2) fig-17

From (1) and (2) we have

$$\begin{aligned} \left[\overrightarrow{\alpha} + \overrightarrow{b}\right] \leq \left[\overrightarrow{\alpha}\right] + \overrightarrow{b}\right] (preved) \\ (\overrightarrow{\alpha}) \left[\overrightarrow{\alpha}\right] = \left[\overrightarrow{\alpha} - \overrightarrow{b} + \overrightarrow{b}\right] - \dots - (1) \\ & \text{But} \left[\left[\overrightarrow{\alpha} - \overrightarrow{b}\right] + \overrightarrow{b}\right] \leq \left[\overrightarrow{\alpha} - \overrightarrow{b}\right] + \left[\overrightarrow{b}\right] (from \pm reiangle = fnequaeity) - Q \\ & \text{From (1) and (2) we get $\left[\overrightarrow{\alpha}\right] \leq \left[\overrightarrow{\alpha} - \overrightarrow{b}\right] + \left[\overrightarrow{b}\right] \\ & = \left[\overrightarrow{\alpha}\right] - \left[\overrightarrow{b}\right] \leq \left[\overrightarrow{\alpha} - \overrightarrow{b}\right] (proved) \end{aligned}$
$$(\overrightarrow{cii}) \left[\overrightarrow{\alpha} - \overrightarrow{b}\right] = \left[\overrightarrow{\alpha} + \left[\overrightarrow{b}\right]\right] \leq \left[\overrightarrow{a}\right] + \left[\overrightarrow{b}\right] (From \pm reiangle = fnequality) \\ & = \left[\overrightarrow{\alpha}\right] + \left[\overrightarrow{b}\right] (a_{1} - \overrightarrow{b}) = \left[\overrightarrow{b}\right] + \left[\overrightarrow{b}\right] \\ & = \left[\overrightarrow{\alpha}\right] + \left[\overrightarrow{b}\right] (a_{2} - \overrightarrow{b}) = \left[\overrightarrow{b}\right] \end{aligned}$$$$

Components of vectors in 2D

Let Xoy be the co-ordinate plane and $P(N_{1},q)$ be any point in this plane. The unit vector along direction of Xancis i.e. \overrightarrow{OX} is denoted by \overrightarrow{P} . The unit vector along direction of y ands i.e. \overrightarrow{OY} is denoted by \overrightarrow{P} . Then true bigure -18 is clear that $\overrightarrow{OT} = \overrightarrow{OY}$ and $\overrightarrow{OT} = \overrightarrow{YS}$ So, the position vector of p is given by $\overrightarrow{OP} = \overrightarrow{TT} = \cancel{OY}^2 + \cancel{YS}$ And $OP = |\overrightarrow{OP}| = TT = \cancel{OY}^2 + \cancel{YS}$ \overrightarrow{PT} And $OP = |\overrightarrow{OP}| = TT = \cancel{OY}^2 + \cancel{YS}$ \overrightarrow{PT} \overrightarrow{PT} $\overrightarrow{PT$

(01,2, 42), then it can be represented by

$$\vec{AB} = (\alpha_2 - \alpha_1)^2 + (4_2 - 4_1)^3$$

Components of vector en 3D

1

op - 12 (12 13 1 (1) N2, Y3, 2R are called the components fig-19 ob op along NS- and s, y and z - ancie respectively. And op = 10p] = (ns² + y² + 2²

Addition and scalar Multipication in terms of component NRLHORA : form of For any verior $\vec{a} = a_1 \hat{e} + a_2 \hat{f} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{e} + b_2 \hat{f} + b_3 \hat{f}$ (i) a+b= (a,+b)? +(a2+b2) 3+(a3+b3)R (ii) a-b = (a1-b1)? + (a2-b2)3 + (a3 - b3)A (cu) Ka = Kait + Ma23 + Mazh, where Kis a scaron. (2v) a = b (=) . a, "+ a2 + a3 + a3 f = bi? + b2 + b3 f $(=) a_1 = b_1, a_2 = b_2, a_3 = b_3$ Representation of Verton in component trom in 3-D and Distance between two points: AB &s any vector having and end points A(x,, y, z,) and O(M2, 4222), then st can be represented by AB = Position vector of B - Position vector of A = (329-429+224) - (319+419+212) $= (\alpha_{2} - \alpha_{1})^{2} + (42 - 41)^{3} + (22 - 21)^{3}$ $|\overline{Am}| = (\alpha_{2} - \alpha_{1})^{2} + (42 - 41)^{2} + (22 - 21)^{3}$

Example 3:show that the polents A(2,6,5), B(1,2,7) and C(3,10,1)are collenear. are collenear. solution: - from given data position vertor of $A,0\overline{A}$ position vertor of $B,0\overline{B} = 7 + 23 + 7R = a7 + 63 + 3R$. Position vertor of $c, \overline{cr} = 97 + 103 - R$ Now $A\overline{B} = \overline{OB} - \overline{OR} = (1-2)^2 + (2-6)^3 + (7-3)R^2 = 7 - 43 + 4R$ condition of perspendicularity:-

At = oil - on = (b-a) f+(10-6) f+ (-1-3) f = f+ cf)-cf f
= - (-f)-cf + cf = -AB
= - (-f) + cf = -AB
= AB = 11 Ai on collinear.
As h' is common to both Vector, -hat proves A, B and
(are collinear.
Example-y - prove that the point having position vector
Joven by 29-9+ f, f - 5)-sf and sf)-cf + form a
right angles +triangle. [2009(w)]
Solution: Let A B and (be the vertices of a triangle
upsh Position vector of b - position vector of A
trayectively.
Then AB = Position vector of b - position vector of A

$$Ai = position vector of c - position vector of A
 $Ai = (1-3)f + (-4-(-3))f + (-4-(-5))f = 2f - 3f) + fi
= (1-3)f + (-4-(-5))f + (-5-1)f = -f - 2f) - 6f
Be = position vector of c - position vector of A
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = position vector of c - position vector of A.
Ai = (bi =) bi = (a^2 + (-3) + 1 - s) = (1 + 4 + 3 + 5 - 5) + s f
Mow AB = AB + s (-1) + (-3) + (-3) + (-4 - 1) f = 6
A = (Ai) = (Ai + (-3) + (-3) + (-3) + (-4 - 1) f = 6 - 6) + s f
A = (Ai) = (Ai + (-3) + (-3) + (-4 - 1) f = 6 - 6) + s f
Are (Ai + c + if + (-3) + (-3) + (-4 - 1) f = 6 - 6) + s f
Are (Ai + c + if + (-3) + (-3) + (-4 - 1) f = 6 - 6) + s f
Are (Ai + c + if + (-3) + (-3) + (-3) + (-4) + f = 5 - 6) + s f
Are (Ai + c + if + (-3) + (-3) + (-3) + (-4) + f = -6) + s f
Are (Ai + vector f o + he direction of a is given by
(Ai) = (a + if + a) + if + (-4) + if + a) = (a + a) + a) + a)$$$

Angle between the vectory:

As shown in figure - 20 angle between two vectors Rs and Pg can be determined ay forsour. Let of be a vector parallel to Rs' and OA' 25 a vector parallel to pa' such that OB' and OA' Entensect each other. Then 0 = LAOB = angle between RS Fig-20 and pg 94 0 =0 then the vertore are said to be parallel, 960 = I then vectory are said to be orthogonal or Percpendicular. Dot product on scalar product of vectore Scalar product of two Nectory a and b whose the Magnitudes are, a and b respectively denoted by a'. 5' is detened as the scaler abcoso, where o is the argie between a and b' such that OLOST $(\vec{a}, \vec{b}) = [\vec{a}](\vec{b}) = (0.50 = ab \cos \theta)$ Geometrical meaning of dot prioduct In figure 21 (a), a) and b) are two vertors having angle between them. Let M be the B tool of the perpendecular drawn than B-10 5 OA . Then ON Esthe Projection of B on a and them tiguere-22(a) =+ is clean 4 that, (OM = [00] COSO = [b] COSO. Now a'. b' = [a] (15) coso) = [a] × prosection of b' and which gives projection of B' on a) = a). B similarly we can write a. B = [a] [b] cosa = 151 (1a) coso) = (5) prosection of a on 5)

Similarium, let us draw a perpendicular
briam A anobe and let N be the koot of
the perpendicular in
$$frq-21(b)$$
.
Then $ON = projection of a on b
and $ON = OA cost = |a| cost = 0$
Propersides ob Dot Product
(i) $a^{2} \cdot (b^{2} + a) = a^{2} \cdot b^{2} + a^{2} \cdot c^{2} + c^{2} c^{2}$$

condition of perpendiculouity : two vertous & - 0, 1 an, 1 + 0, 4 and h - by an, 100 pergendicular do coch other is 13, to 0, to 15, 15, 15, 15, 15 1+11 1 condition of paralleliem: Two vertores at = 0, 2 + 0, 2 + 0, 2 and b= 1, 1 + 1 + 1 + 1 Sealon & vector projections of two vectors (Imperiant faimulas) contain projection of B on & - B.B verton projection of is on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \hat{a} = [\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2}]\vec{a}$ Sendare projection of 2 on B = 0.6. Vector projection of a on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \cdot \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \cdot \vec{b}$ t mamples 9.7 rend the value of p for which the voctors 3i + 2j + 9k, i + pj + 3k one perpendicular to task other Let a = 31+33+9h and B= 1+pj+3h. solution :-Here a1 = 3, aq= 2, a3 = 9 $b_1 = 1, b_2 = p + b_3 = 3$ Given all b = ash + ash + ash = 0

-) 3.1 + 3. P+ 9.3 = 0

$$\begin{array}{l} \overrightarrow{P} 3 + 3p + 3\overline{7} = 0 \\ \overrightarrow{P} 3 + 3p + 3\overline{7} = 0 \\ \overrightarrow{P} 3 + 3p + 3\overline{7} = 0 \\ \overrightarrow{P} 2 + 3\overline{0} \\ \overrightarrow{P} p = -3\overline{0} \\ \overrightarrow{P} p = -15 \ (Ans) \end{array}$$

$$\begin{array}{l} \overrightarrow{G} \cdot S \quad F \ ind \ the \ value \ of \ p \ forr \ which \ the \ vectors \\ \overrightarrow{R} = 3\frac{2}{7} + 3\frac{2}{7} + 9\frac{2}{7} +$$

2

,

Q11. Find the Scalar and vector projection of a on b where $\vec{a} = \hat{i} - \hat{j} - \hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} + 3\hat{k} (2013 - W, 2017 - W)$ Solution : Scalar Projection of \vec{a} an $\vec{b} =$

$$\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{1 \overrightarrow{b} 1} = \frac{1 \cdot 3 + (-1) \cdot 1 + (-1) \cdot 3}{(\sqrt{3^2 + 1^2 + 3^2})} = \frac{3 - 1 - 3}{\sqrt{19}} = -1$$

)

Vector projection of a on b.

r

$$= \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} = \frac{1 \cdot 3 + (-1) \cdot 1 + (-1) \cdot 3}{(\sqrt{3}^2 + 1^2 + 3^2)^2} (3\hat{i}+\hat{j}+3\hat{k})$$

$$= \frac{3 \cdot 1 \cdot 3}{19} (3\hat{i}+\hat{j}+3\hat{k}) = \frac{-1}{19} (3\hat{i}+\hat{j}+3\hat{k})$$

(112. Find the Scalar and Vector projection of
$$\vec{b}$$
 on \vec{d}
where $\vec{d} = 3\vec{i} + \vec{j} - \vec{k}$ and $\vec{b}' = \vec{k} + 3\vec{j} - 4\vec{k}$ (2015-53)
Solution: Scalar Projection of \vec{b} on \vec{d}

$$= \frac{\vec{d} \cdot \vec{b}}{|\vec{a}|} = \frac{3 \cdot 2 \pm 1 \cdot 3 \pm (-2) \cdot (-4)}{(\sqrt{3^2 \pm 1^2 \pm (-2)^2})^2} (3\vec{i} + \vec{j} - \vec{a}\vec{k})$$

$$= \frac{17}{14} (3\vec{i} + \vec{j} - \vec{a}\vec{k})$$

Q-13 If
$$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$$
, then priove that $\vec{a} = \vec{o} \text{ ore } \vec{b} = \vec{c} \text{ ore } \vec{a} \cdot \vec{c}$
 $\vec{a} \perp (\vec{b} \cdot \vec{c})$ prioof :- Given $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$
 $=>(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \vec{c}) = \vec{o}$
 $=>\vec{a} \cdot (\vec{b} - \vec{c}) = \vec{o}$ (applying
 $\neq \vec{a} \cdot \vec{c} \cdot \vec{c} = \vec{a} \cdot \vec{c}$)

Dot preduct of above two vector es zero indicates the following conditions $\vec{a} = \vec{o}$ or $\vec{b} - \vec{c} = \vec{o}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ $\Rightarrow \vec{a} = \vec{o}$ or $\vec{b} = \vec{c}$ or $\vec{a} \perp (\vec{b} - \vec{c})$ (proved) Example -14 Find the work done by force $\vec{F} = \hat{i} + \hat{j} - \hat{k}$. acting on a particle if the particle is displace A from A(3,3,3) to B(4,4,4) Ans: - Let O be the orligin then Position vector of A $\vec{OA} = 3\hat{i} + 3\hat{j} + 3\hat{k}$ position vector of B $\vec{OB} = 4\hat{i} + 4\hat{j} + 4\hat{k}$

2 d .

Limit and continuity

In Mathematics, Differential calculus is a subfield of calculus that studies the ratio at ahich quantities change.

Quandity A quantity is an amount. number or measurement, in other words an expression having value considered as a ahole. There numbers can be expressed as a whole number, fraction, Decimals, Percentages.

10

0500 Type of Quantities Quantities are broady divided en to two categories. (1), caretant (2) variable

Constant is a symbol which Constant is a symbol which remains the Same value through out Constant a set of Nathematical Operation. There are mainly two types of (1) absolute constant Canstant. di), cubitary constant. Constant -: Constants do not change ahaterin Operation we may perform are known (). as abrolute Constant. (i) Abbitany Carstant -: In the equation y = axtbstoright line are arbitraryOF a straight

Set : in the concertion or any well defined objects known as elements A set Or numbers of the set. rod schools Ex: A= {1,2,3,4,5} A Relation between two sets connection OF ordered Paros containing object from each sets. If the object form each sets. If the Object n'n from 1st set and the Object y 5 from 2nd set then the objects are Said to be related if the selared Pars is in the real ation. (r, 7) A= { 1,2} Gx: 8: 21, 2,3] $A \times B = \{(1,1), (1,1), (1,3), (2,2), (2,3)$

(1). Find a relation where
$$\chi = \chi \to R_1 = \xi(1), (21)$$

ii) find a Relation where $\chi = \chi^1$
iii) find a Relation where $\chi = \chi^1$
iii) ford a relation where $\chi = \chi^2$, $\chi \to R_3 = \xi(1, 1)$
iii) ford a relation where $\chi = \chi^2 \to R_3 = \xi(1, 1)$
functions
A function is a special case
A function is a speci

and the second se

function com Picture cally a represented as a for iles/all a prof (11 mikeles a post sin Mars features of function:i). To each element x EX, there exists a unique element y EY such that $\gamma = \pm c x$) (ti) Distinct elements OF X may be associated with the same elements OFY. May be elements of y which associated with any element of x. (iii) These are "or or or

Domain. is called the Domain. The set x Or the function f. The set OF all mages of the elements OF X under the mapping of is called the reange of f is denoted by fix). Range. en general fer) LY. Let a & b two distinct real numbers at b and set alb. Internals Then i). [a,b] = {xER; a ≤ x ≤ b] is called Closed interval from ato b including a sb. the b in Ca,b) = Sner: acnob) is called in Ca,b) = from atob exclude OPen (not included) (motineluded)

Notes to will always comes with
Notes to will always comes with
open protekett, be cause we con't show
to one number the. Cas of a undefined)
(v).
$$[a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$$

(v). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vi). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vi). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vi). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vi). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vi). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vi). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vi). $(a_{1}\infty) \rightarrow [2 \ e \ (27, a]]$
(vii). $(-\infty, a] \rightarrow [2 \ e \ (27, a]]$
(viii). $(-\infty, a] \rightarrow [2 \ e \ (27, a]]$

)

Classibilition Of function A function of defined from the Set X to the set Y is said to be on to function of reange on F. F. con a Proper Subset of Iny. The function f: x-> Y is called on to function of these exist at least one element Of Y which does not correspond to any element OF X $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} p \\ q \\ r \\ s \\ t \end{pmatrix}$ onto function (subjective mapping): ____ A function f: X->Y is said an on to function if every + Y is the mage of same to be element m×. element

1F X = { 1,2,3,4] pi y = {a,b.c} $F = \{(0), (2, b), (3, 0), (3, 0)\}$ (y set in Complety wed) (1) fra 3 for Cre one Mapping listinct element IF distinct image in y two OF & have distinct one are function. The Function i One one and on to function (Bijection) A function which is Such it is (i) arts (ii) one or it Bijectin. is Catled x = { 1,2,3]; Y = { a,b, c]

Many-one function -: A Function of from the Set X to the set Y is said to be com Many one it there exists at least one becoment in y anich has more than one Preimage in X.

Types of Yunchion :-
I Identify Yunchion :-

$$Dex^{n}$$
 :- The Yunchion X defined by $Y(x) = x$ for $+ x \in R$ is called
the itentify Yunchion .
Domain = R
Range = R
 $y - ans$
 $y - a$

Polyn	omial Funct	ton :-		-1 Daid in	in sington	get to	California and
The	Function	F defined	by F	$(x) = \alpha_0$	+ a, x + az	$x^2 + \cdots$	+ anx)
	an +	o, whese	ao, a, a2	an	ase seal	nos and	nen ;
	called	a polynomia	al Functio	in of deg	see n.		-
00	main = R	, Range	=R			adapte i	

> Inverse Trigonometry:-

=

~)	1		and the second			
Function Nume	Domain	Range	Greaph			
sin ⁻¹ x	[-1,1]	$\int -\pi_{1_{2}}, \pi_{1_{2}}$	YY			
			x' > x			
			l ly			
C05-12	EUIJ	[0, π]	YA			
tota (no d bag (x	e made a	10	x'e x			
Default	and a Repart	a a roa R	I have a contract of			
±an-1,2c	(-0,0)	(- T/ T/)	Y' T			
		(12, 192)	\leftarrow			
Ethel out and	Burnelas Rec	COUNTY PERCE	the phometance and the company			
cot'x	(-0,00)	(0,π)	V.A.			
	and the paper -		×' ← ×			
		A to for				
sec ⁻¹ x	$(-\infty)$ - $\overline{1}$ (1) (1) (1) (1) (1) (1) (1) (1)	To #1 (#,2	74			
the source seaf me		[¹ , ¹] - { ¹ / ₂ }	x'E C			
and the set		A N (R) A				
cosec ⁻¹ x	6-0-TUTION	ETTI TIT C.2	Y-anis n			
	(a, 10 [(,a))	[1/2 , 1/2] - {0{	and the the			
		1	x-anis			
A CONTRACTOR		14- 2 7 H				

Even Yunchim :- A Tunchim
$$T(x)$$
 is Said to be an even Tunchim
if $T (-x) = T x$
add Tunchim :- A Tunchim $T(x)$ is said to be an odd Tunchim
if $T (-x) = -T x$
Cosine Tunchim :- $T (x) = cosx$
Domain = R
Range = Eⁱ, IT
Tangent Tunchim :- $T (x) = tanx$
Domain = R - $f(2k+1)$ T $k \le k \in I$
Range = R
Secant Tunchim :- $T (x) = 5cc x$
Domain = R - $f(2k+1)$ T $k \le k \in I$
Range = R - $(-1,1)$
Cotongent Tunchim :- $T (x) = cosc x$
Domain = R - $n \pi$ $n \in Z$
Range = R
Cosecant Tunchim :- $T (x) = cosc x$
Domain = R - $n \pi$ $n \in Z$
Range = R
Cosecant Tunchim :- $T (x) = cosec x$
Domain = R - $n \pi$ $n \in Z$
Range = R - $(-1,1)$
Explicitly Tunchim :-
A Tunchim which is expressed twechy in terms of independence variable
is called an explicit Tunchim :-
TT o Tunchim :-
Single valued Tunchim :-
Single valued Tunchim :-
A runchim $\frac{1}{2} + Cy$ is Soid to be a Single valued
Tunchim is for texpressed twechy in terms of independence variable
is called an implicit Tunchim :-
Single valued Tunchim :-
A runchim $\frac{1}{2} + Cy$ is Soid to be a Single valued
Tunchim is for expressed twechy in terms of independent variable
is called an implicit Tunchim :-
TT o Tunchim :-
A runchim $\frac{1}{2} + Cy$ is Soid to be a Single valued
Tunchim if there is one
and whice of X correster the reach walke of X .

periodic Func	tion :-	4 4	Gad	181 K	it not	aven market in a Turi
A Function	7 (21)	15 5	aid to	be a	pediodic	Function it these enists
a positive i	seal cone	itant T	such	that 7	~ (x+ T)) = F(20), For all x E
Introduction #	to Limits	;-				
The motion	of cl	ogeness	and 1	neazin@55	is bas	sic in several branches
of Mothernat	ics. The	conce	ept or this	Limit notion.	of a g	Function, which is Fundamental
in calco -o	11. 4	in the	2.00	1		
consides	the ru	nction,	lor al 1			in - million to second
	r : R -	→R	acrined l	J	Karfa	a share and alread to a
Y(x) = 2	(x+1 ,	Let H	ne vabid	ble x	takes 1	lalues closes and closes for.
Table-1	x	2.1	2.01	2.001	2.0001	A = Agrica - A
	7(2)	5.2	5.02	5.002	5.0002	and a Station of the state
-110.2		1	1	1		rel
10010-2	x	1.9	1.99	1.999	1.9999	NOK- A - MUMUT A
	F(x)	4.8	4.98	4.998	4.9998	Ruge a R-C
Symbolically,	Lim (2	x+1) = :	5			adangent Function :- T. (x
1	x.	72			a Tr	1-0 - Dimens
From table -	2 , 11	is ob	served;	that the	LiFFer	rence between 2c and 2
is decreasing	, the	diffesen	ce beh	ween F((x) and	6 is also decreasing
cossospondly.		1				manual Smalmer - F (1)
Limit of a	Function	:-			-	a - a - a - a
pern: - let	F (x)	be a	Function	defined	in som	ne neighbourhood of a,
			No. 1 St. In		R. C. S. C. C.	111117

except possibly of a and L be a number, we say that $\liminf \sigma T$ F(x) as x approaches a is 'L' written $\lim F(x) = 1$. IF For any E > 0 however small there exists a, d > 0 such that

$$|x(x) - 1| \leq \varepsilon$$
, whenever $0 \leq |x - \alpha| < \delta$

* To each E = 0, there exists a positive no. § such that, when $0 < [x-a] < S \implies [F (x - 1) < E$
(

$$\frac{\epsilon - \delta \quad \text{method} \quad (x - 1) < \epsilon \quad \text{wheneves} \quad [x - a] < \delta$$

$$\frac{|\gamma(x) - 1| < \epsilon \quad \text{wheneves} \quad [x - a] < \delta$$

$$\frac{|\gamma(x) - 2| < \epsilon \quad \text{wheneves} \quad [x - a] < \delta$$

$$\frac{|\gamma(x) - 2| < \epsilon \quad \text{wheneves} \quad [\gamma(x) - 1] < \epsilon$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [\gamma(x) - 1] < \epsilon$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + 1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 5| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 2] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

$$\frac{|(2x + 1) - 13| < \epsilon \quad [x - 3] < \delta \quad (1 + \frac{6}{2} = d)$$

	> 4x+4 < E	-: finil to behavleve &			
	=> 4 (x+1) < G				
	> 12+11 < 6/4				
	>> (20+1) < S (Let, E/4 = 0	r)			
	50, $ (1,2)-5 -69 \leq 6 = 100$	$-(-1) < \delta$			
		1 (Conved)			
	=> $ (4)x-5)+9 < E = x+1 < \delta$ (power)				
\$	1-H.L and R.H.L				
	<u>1.H.1</u> <u><u>R.H.1</u></u>	in a balton activities toxo			
	$Lim \varphi(x)$ $Lim \varphi(x)$ $x \ge c^+$	0 11m (22++3) = 2+3-5			
		14 ×			
	check the existence of the Fu	nction $\varphi(0) = 3x+4$ at $x-x$.			
	Ans:	1 = (1+ = x = + = x = + 1) = 1			
	1.14.1	R.H.L Ocy			
	$\lim_{x \to \infty} \varphi(x)$	Lim F (2) Concelling			
	x > c ⁻	$\chi \neq c$ - $(3\chi + H)$			
	= $Lim (3x+4)$	21-32+			
	2>2	= 1 im (3(2+h)+4)			
	= $\lim_{h \to 0} (3(2-h), +4)$	h->0			
	= 10	= 10			
	:, L.H.L = R.H.L the limiting value enusts.				
	$E^{\chi-2}$ and $E^{\chi-2}$ at $\chi=3$	A Stranger			
	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	R.H.L			
5	$L \rightarrow L$	Lim 7 Or)			
	230	XOCT LIM TOCT			
	= lim [3c]	2+3+			
- AL	x > 3 5 h7	$= \lim [3+h]$			
No. of Street, or Stre	2 Jun 2-11	hour by rits mil (
ALL RAN	= 2	= 3			
1					

An

I.

1

- and an and and and a set

$$0 \frac{R_{0} houlisation nethol:}{1 m x} = (\frac{a}{2} x_{0}m)$$

$$= \lim_{2 \to 0} \frac{x}{(2\pi i + 1)} (\frac{b}{(2\pi i + 1)})$$

$$= \lim_{2 \to 0} \frac{x}{(2\pi i + 1)} (\frac{b}{(2\pi i + 1)})$$

$$= \lim_{2 \to 0} \frac{x}{(2\pi i + 1)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{(2\pi i + 1)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{(2\pi i + 1)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{x^{2}} (\frac{x}{(2\pi i + 1)}) = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{x^{2}} (\frac{x}{(2\pi i + 1)}) = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{x^{2}} (\frac{x}{(2\pi i + 1)}) = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{x^{2}} (\frac{x}{(2\pi i + 1)}) = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{x^{2}} (\frac{x}{(2\pi i + 1)}) = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{x^{2}} (\frac{x}{(2\pi i + 1)}) = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x}{x^{2}} (\frac{x}{(2\pi i + 1)}) = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{(x^{2} + u - 2)}{x^{2} (\sqrt{x^{2} + u} + 2)}$$

$$= \lim_{2 \to 0} \frac{(x^{2} + u - 2)}{x^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2} + u - 2i}{x^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = i + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i = 2$$

$$= \lim_{2 \to 0} \frac{x^{2}}{y^{2} (\sqrt{x^{2} + u} + 2)} = \int f + i =$$

-

.

L AX

3

$$\begin{cases}
\begin{aligned}
\begin{cases}
\begin{cases}
\begin{cases}
\frac{1}{1} & \frac{1}{x - 5} & \frac{1}{2} &$$

と思い

and its production and the second sec

$$\frac{1}{9} \frac{heldod}{1} \frac{\delta \tilde{r}}{\delta \tilde{r}} \frac{explusting}{\delta \tilde{r}} \frac{\delta hen}{2} \frac{\chi^2 \Rightarrow \infty}{2} \frac{(n \tilde{r} n) \tilde{r} \tilde{r}}{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{n}{2} \frac{n}{2} \frac{1}{2} \frac{n}{2} \frac{$$

B	Lim	1+2+3++n	state Sunction & m	T angenera
	x>d	n ²	00-2	
Ans.	Lim	$\frac{n(n+1)}{2}$	1	3 € G
	2(→ ∞)	p2		mi di
	Lim	n (n+1)	Sing	0+0
	x≥∞	2n ²		ma at
	um	n2+n	0	0 6 0
	2300	202		m 1 (A)
	1:00	み(1+1) 1+1 1	10 m/z	980
	21300	$\frac{1}{2\pi^2} = \frac{1}{2} = \frac{1}{2}$		F321-
A	mal	$1^{2}+2^{2}+3^{2}++n^{2}$	5.0 2K	mil
6	2300	n ³		04×.
Ans.	Lim	n(n+1)(2n+1)		
14	x > 00	6		
	1214			
18	Tiw	$(n^2 + n)$ $(2n+1)$	si0 53	mi G
	x > 00	61 XHANH MA	*	041
	1.0	$Q_n^3 + n^2 + Q_n^2 + 1^{1}$		
	(Jon)			
	90-100	Gr		
	0.0	$9n^3 + 3n^2 + n$	vier	1
	Kom	203	Key Out	1000
	2-300	61 AVI A	2	
	lim	22 2+ 317 -2)		
	01-500		1	m 1
12	9070	GR		10 x 10
	1.m	9+3+ - 9+0+	FO	an ba
	1-100	$\alpha = \frac{\alpha}{n} + \frac{\alpha}{n} = \frac{\alpha}{6}$		25.24
	9070-	6, 4	4.6 00.4	m. B
		- Tes	X.	
1		- 1	and a start of a	
20	and the second second	- 3		-

3	Taiganometaic Function :-	Ind	eleominate Fo	om :- <u>0</u> 00	
	Q lim SiPA			(A) 0'00	Cox,
1		0	0 X au	G ,~	
	(a 1 m a	Q	00 - 00	(5) 00	
	a = 1	(3)	0		
	040				
	$3 \lim_{n \to \infty} \frac{1}{2} \lim_{n \to \infty} \frac{1}{2}$				
	0>0 0				
	@ 1:m = I				
	030 ton 0				
E	X+				
0	Lim Sin 2x	1 @ Lim	3in ×/2	Partie	
	x⇒0 ²⁽	x 30	×	N KF -1	
Ans.	Lim 2 Sin 200	Ans. Lim	$\frac{1}{2}$ sin	21/2	
2	(>0 2%	x30	$\frac{1}{2}x$	3	
2	$\lim_{x \to \infty} \frac{3! n 2x}{2} = 2 \times I = 2$	1 1100	sin 3	5 1	
1	2×20 2×2	2 230	2/2	$= = \frac{1}{2} \times 1 =$	12
0	lim <u>sin 5x</u>	17	1		on er
x	>0 ×	6 Lim	tanfyx)		
A05. 1	$1m = 5 \sin 5x$	Arc Lim	-4 tan	(- 4x)	
x	≥0 bx	#19. 1.111 x→0	- 470		
5	$\lim_{T \to \infty} \frac{g(n - 3)}{5x} = 3 \times T = 3$	-H 1:m	tan 647	9	- 24
5	230 7	-470	-HX	= - 4 ×1 =	- 1
3 1	m	(A)	Lan 10076		
27		a Lim	x		
hg. Li		170	100 tun 1	0076	
XE	0 10511 105	110. Lim 220	100 %		(1)27
1	lim tox	1:00	Lan 100	7	426.23
10	2 70 311 10	NE Keal	100	$\frac{1}{\chi} = 100 \chi I$	= 100
102	$m = \frac{1000}{100} = \frac{1}{10} \times 1 = \frac{1}{10}$	10-2-00	La Face	i g	mig
102	x = 20 511 100 10 (8	x and it is	UX		
ญ 1.4	m tan 3x	B. Lim	1 Sin 500	$1=5\pm im$	317576
x x >	x or	**0	4	4 x >0	5 %
. 1ie	m 3 tan 3%		1 ×4%	= 5 1im	SMBR
x-	32 32	Lim	5/17 32	4 5x7	0 52
31	im $\tan 3x - 2x = 2$		`2	= 5	x) = 5
32-	DO 3x 11	mil -	3 5171520	म	1

0	Lim sin 3x	(2) 11m	sin 420	at mil D
	x > 0 sin 4x	x70	7/2	
Ans	Lim 5:17 32	Ans- Lim	8 Sin 476	
	x=20 <u>x</u>	230	8×1/2	
	Sin 4%		c:0 H11	a * 1 - 0
	2 5/17 37/	8 Lim	= =	8×1=8
	$\frac{1}{3}$	4120	(the assoc	180' = T
	H SINHIX	@ 1 im	sin x	$I^{\circ} = \frac{\pi}{122}$
	42	2630	X	$= \pi \chi$
	a lim sin 300	Ms.1:m	sin TTX/180	180
	$\frac{3}{3} \times \frac{1 \times 3}{3} = \frac{3}{3}$	230	K	
	11 1:00 5:10 H2r 1 X4 4	1.00	T/120 Sin TX/180	969
	4230 420	230	TT/20 X	
Ra	Ism Sinax	1	1180	601
C.	x>0 tan px	T. Lim	sin 710/180	$=\frac{\pi}{120} \chi_{1} = \frac{\pi}{120}$
1	sind 20	180 180	TT X/180	180 18-
AT15.	2.40 22	.96	1 . 0 200	
	tan B.X	H Lim	Fall 3x	
	- 72	x >0	5/1. 42	
	1m & Sinacoc	Ans. Lim	tan 32	(a) In cas
	x>0 <u>~22</u>	XZO	Sin HOC	0ed
	<u><u><u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	× + 14 /2	x	
	Br	Lim	3 Jun 300	582
	of Lim Sindx	ルラロ	320	
	$\chi\chi \rightarrow 0$ $\chi\chi' = \frac{\chi}{\beta}$	5-10.2	HX	
	B kim tan Bx pri 1	2 1:00	tan 3x	
	BIC > O Par	3270	32 3	$\frac{x_1}{x_1} = \frac{3}{x_1}$
Ø	$\lim_{n \to \infty} \frac{\tan \frac{3}{3}}{3}$	4 Lim	sin 4x 4	x1 4
	x >0 5:10 HX/5	47570	476	
Ans	Lim tan 2/3			
19-1	$21 \ge 0$ 2 2 2 2 2 2 2 2 2 2	1 2 3 mile		Dry 1 mt
	X	2 × 2		
1992	11m 1/3 tan 2/3			
	x30 <u> </u>			
	4/5 Sin 4x/5			
and and	42/5	and e		
1-1-1	1 1im tan 2/3			and the second second
and and	$\frac{3}{3} \times \frac{3}{10} \times \frac{3}{13} = \frac{3}{3} = \frac{1}{8} \times \frac{5}{4}$	The second		
	H Lim sin Hys H 5 = 5		1	
Contraction of the	D -1 - 0 42/5 12		and the second second second second	

30 m

3 D at 20

28-96 2

A 1911 62

8

3/3

Jan

510 41/15

St Act

\$ (E

ion por

11.5

and t

21

2

H

1 X

1 x

L

140

mil

-m	Exponential / Logazithmic :-	D	- ofi
	$\rightarrow \lim_{x \to \infty} (1+x)^{1/x} = e$	⇒log mn = log m + log	y n
	x >0	> log m = log m - Log	a b
	$\rightarrow \lim_{x \to \infty} (1 + \frac{1}{x})^{x} = 0$	> log m ⁿ = n log m	
	$\rightarrow \lim_{n \to \infty} a^{n-1} = \ln a$	J Joj	n = loge
	x zo x	Ľ	
	$\Rightarrow \lim_{x \ge 0} \frac{e^{\chi} - 1}{x} = 1 = 1 = 1$	$\frac{1}{x \neq 0} \frac{\log(1+x)}{x} = 1$	a me
-0	$l:m = a^{2c} - 1$		
40	250 20	$405 1 m 2^{2i} - 1 + 1 - 3^{2i}$	
kng.	tra	x 051	
0	$\lim_{x \to \infty} \frac{2^{x-1}}{x}$	$\lim_{x \to 1} (2^{x}-1) - (3^{x}-1)$	
Ang	102	$\chi \neq 0$ χ	-1
(A)	$1500 2^{20} - 1$	$\begin{array}{c} 1 \text{ in } \frac{2^{n-1}}{2^{n}} - \frac{1}{2^{n}} \\ 3(30) \frac{2^{n-1}}{2^{n}} - \frac{1}{2^{n}} \\ \end{array}$	
0	x 20 20 and malked	= 1n2 - 1n3	
Ans.	162 method 2no method	@ lim 2 x-1 -1 Imf	1 mai 1
	$2 \lim_{z \to 0} \frac{2^{2x}-1}{2^{2x}} \xrightarrow{1} 1^{1111} \frac{2^{3y}-1}{y^{2y}}$	x31 x-1	asx and
	$22(30)$ $22(2)^{2}$ = $10(2)^{2}$	$\begin{array}{c} \text{(H13)} \text{(ef ,)} \\ \Rightarrow \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	= 2 1 n 2 = 2 1 n 2	11m <u>27-1</u>	
Ø	Lim <u>3222-1</u>	4+1 21 y	A mit @
	$x \ge 0$ x $(x)^{2} = 1$ $(x)^{2}$	$\lim_{y \to 0} \frac{2y-1}{y} = \ln 2$	230
Mns.	$1 \text{ m} (3^{-1})^{-1} = 1 \text{ m} (0)^{-1}$	$\int \int dx = b^{2\ell}$	
	1026	x-30 x	
٢	$\frac{1}{2} \frac{1}{2} \frac{1}$	Ans. Lim <u>an -1+1-b</u>	
Ans.	$10 \lim_{n \to \infty} \frac{4^{10x} - 1}{1} = 10 \ln 4$	$1m(a^{1}-1) - (b^{2}-1)$	() m1 ()
-	x01 0+x01	1170 70 10	gains in
0	$\lim_{n \to \infty} \frac{2^{52} - 1}{n}$	$\lim_{n \to \infty} \frac{\alpha^{n-1}}{\alpha} - \lim_{n \to \infty} \frac{\beta^{n-1}}{\alpha} - \beta^{n-1$	
409	1im (05) ² -1	05%	De oni
1.5	$x \to 0$ $x = 1n(R)^2$	= 1na - 1no	
		$= 10\frac{a}{6}$	

1----

1 1-

SPECIAL PROPERTY

$$\begin{cases} 0 & check & he & conhouldy & Y(x) = \int \frac{x^2 - a^2}{x - a} & ; Y & x + a \\ a & iY & x = a \\ a & iY & x = a \\ c & iY & x = a \\ i & y & y & y \\ i & y & x = a \\ i & y & y & y \\ i & y & y & x = a \\ i & y & y & y \\ i & y &$$

at x=o check the continuity $F(x) = \sin \frac{\pi [x]}{2}$ 3 V.0.2 R-H-1 1.H.L Ans. 0+ x=0 F (2) 1:00 ¥ (x) Lim $F(x) = Sin \frac{\pi [3x]}{2}$ xzct x36 $\lim_{x \to 0^+} \sin \frac{\pi [x]}{2}$ $\sin \pi [x]$ Lim 230+ = $9in \frac{\pi}{2}$.: (ac = oth, h > 0) x>0 -: (x= 0-h, h >0) sin o SIN TT [oth] 1:00 sin TO-h 1im h 20 5:n0 = 0 h >0 Sin TXO Lim sin TX(-1) Lim h >0 h >0 Sin 0 Lim sin (- 張) 1 m h70 n >0 1m 500 = 0 - Lim $\sin \pi/2 =$ h 30 h20 :. 1.11.2 = R.H.2 (nunction dues not exist) 1.11.2 # R.H.1 = V.O.2 (discontinuous) $f(x) = (ax^2+b)$ if X <1 0 IF I 17 x = 1 17 271 20x-6 x=1, Find a and b. It is confinuous Yez. R.H.L 1.14.2 Ans at x = 0 FG) 1:00 F (x) Lim XACT ¥ (x) = 1 x > c 1:m 202-6 Lim (ax2+b) x > 1+ ·· (x = 1+h, h >0) : (1 = 1-h, h = 0) 1:m 1 (2a(1+h) - b) $\lim_{n \to \infty} \int a (1-h)^2 + b \int da$ h >0 = 2a-b h >0 = a+b is continuous since the Junction > 1.H.1 = R.H.L = V.O.L > a+b = 2a-b = 1 * at 6 = 1 + a+5 20 46 = 3 3 +0 30= 1/3 30 12 1.

÷ .,

check the continuity 0 F(x) = [3x+11] at $x = -1\frac{1}{3}$ - nemolisher -VOL R.H.L Ans. 1.4.1 at x = -11/3 F (x) 7 (x) Lim 1;m F(x) = [3x+11]231+ スラン ルシーリオ [3×+11] x>-11/3 [3x+11] = [3×-"]+"] $\therefore \left(2c = \left(\frac{-11}{3} + h\right), h \neq 0\right)$ = [-11 +11] (x=(-11/3-h), h>0) 3(-1+h) +11] Im - 0 [3(計-h)+"] Im 200 120 Lim [-11 +3h +11] [-11 - 3h +11] Lim 120 tim [0+3h] =0 h >0 [0-3h] = -1 n >0 1:1 1.H L # R.H.L (Function does not exist) n>0 1.41 # R.HL = VOL (OSCONTINUOUS)

7 (*)

Topic: DIFFERENTIAL CALCULUS

DESCRIPTION: We define the slope of the curve y=f(x) at the point ,where x=a to be $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$, when it exists this limit is called the derivative of f at at x=a .now we will look at the derivative as a function derived from f by considering the limit(slope)at each point of the domain of f. The derivative of the function "f" with respect to the variable x is the function "f" whose value of x is $f(x)=\lim_{t\to 0} \frac{f(x+h)-f(x)}{h}$.

A Derivative refers to the instantaneous rate of change of a quantity with respect to the others. That is denoted by dy/dx, Hear y=f(x).

Consider the general equation f=f(x).Let P&Q be two points of the graph whose abscissas are x and x+h. The corresponding ordinates are f(x)and f(x+h).The quantity h ,pictured in below as positive may be either positive or negative. In either case the slope of the secant line P&Q is $5=\frac{f(x+h)-f(x)}{x+h-x}$

$$=\frac{f(x+h)-f(x)}{h}$$

Suppose now we keep "p" fixed and let "Q" move along the curve toward "p" (or let h approach zero). As this happens, the curve may be of such nature that the slope of the secant line various & approach some fixed value. In that case, the line through p with slope equal to this limiting value is called the target to the curve at p .Further, the lope of the tangent is said to be the slope of the curve. That is, the slope of the tangent, and also the slope of the curve, at the point p (x, y) is defined as $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ provided the limit exit.

MODEL QUESTIONS :

(1) Find the derivative of the X at x=1.

Ans: let
$$f(x)=X$$
 then $f'(1)=\lim_{h\to 0}\frac{f(1+h)-f(1)}{h}$

$$=\lim_{h\to 0}\frac{(1+h)-1}{h}$$

$$=\lim_{h\to 0}\frac{h}{h}$$

$$=\lim_{h\to 0}1$$
=1
Thus the derivative at x at x=1 is 1.

(2) Find the derivative of x^2 at x=1

Ans: let
$$f(x)=x^2$$
 then
 $f'(1) = \lim_{h \to 0} \frac{f(1+h)-f(1)}{h}$
 $= \lim_{h \to 0} \frac{[(1+h)^2]-([1]^2)}{h}$
 $= \lim_{h \to 0} \frac{(1+2.1.h+h^2-1)}{h}$
 $= \lim_{h \to 0} \frac{h(2+h)}{h}$
 $= \lim_{h \to 0} 2 + h = 2$

(3) Derivative of constant function f(x)=c

Ans:
$$f'(c) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$
= $\lim_{h \to 0} \frac{c-c}{h} = 0$

MOST PROBABLE QUESTONS:

- (1) Find the derivative of the x^3 at x=1.
- (2) Find the derivative of x^n at x=1
- (1) Find the derivative at 99x at x=100.
- (2) Find the derivative of $x^2 27$
- (3) Find the derivative of $\frac{1}{x^2}$
- (4) Find the derivative of $2x^2 2$ at x=1

Topic : ALGEBRA OF DERIVATIVE

DESCRIPTION:

Now we define the algebra of derivative that is called the laws of derivative .consider two function f(x) and g(x) whose derivative in the same domain. Here we define the algebraic operations of functions like addition ,substraction, multiplication ,scalar multiplication and division

Consider two function f(x) and g(x) in the same domain .then their operations

- (1) Addition: $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
- (2) Substraction : $\frac{d}{dx}[f(x) g(x)] = \frac{d}{dx}f(x) \frac{d}{dx}g(x)$
- (3) Scalar multiplication: $\frac{d}{dx}[cf(x)] = c|f(x)|$
- (4) Quotient of two function $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f(x) \cdot \frac{d}{dx}[g(x)] g(x) \cdot \frac{d}{dx}[f(x)]}{[g(x)]^2}$

MODEL QUESTIONS :

(1) Find the derivative of function
$$f(x) = 2x^2 + 3x + 1$$

Ans: $\frac{d}{dx}(f(x)) = \frac{d}{dx}(2x^2 + 3x + 1)$
 $= \frac{d}{dx}(2x^2) + \frac{d}{dx}(3x) + \frac{d}{dx}(1)$
 $= 4x + 3 + 0$
 $= 4x + 3$

MOST PROBABLE QUESTIONS:

- (1) Find the derivative of the following
- (i) $8x^3$ (ii) $5x^2$
- (2) find the derivative of the following functions.
- (1) $5x^3 + 2x 3$
- (2) 3xy
- (3) $\frac{1}{r}$
- (4) find the derivative of the function $\frac{3xy}{x}$

Topic: DERIVATIVE OF STANDARD FUNCTION(Trigonometric function)

DESCRIPTION :

Every one has already knows what is trigonometric function in 1st semester .it should be kept mind that to find the derivative of trigonometric function ,the angles must be in the radian measure . In case the given angle is measured in degrees, we must first convert it into radian measure by using the formula 180 degree = π radian.

We shall now find the derivative of trigonometric function using the definition of the derivative of the function.

(i) Derivative of sin x: Let f(x) = sin x Then f(x+h) = sin (x+h) Thus f(x+h)-f(x)=sin(x+h)-sin x $=\frac{f(x+h)-f(x)}{h} = \frac{\sin(x+h)-sinx}{h} = \frac{2\cos(\frac{2x+h}{2})sinh/2}{h} = \cos(x+\frac{h}{2})\frac{sinh/2}{h/2}$

<u>Now taking limit $h \rightarrow 0$ </u>

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} [\cos(x + \frac{h}{2}) \frac{\sin h/2}{h/2}]$$
$$= \lim_{h \to 0} \cos(x + \frac{h}{2}) \cdot \lim_{h \to 0} \frac{\sin h/2}{h/2}$$
$$= f'(x) = \cos x \quad (\text{ where } \lim_{h \to 0} \frac{\sin h/2}{h/2} = 1)$$

So we get that $\frac{d}{dx}(\sin x) = \cos x$

(ii) Derivative of cos x

Let f(x)=cos x Then f(x+h)=cos(x+h)-cos x

Since f(x+h)-f(x)=cos(x+h)-cos x

Or
$$\frac{f(x+h)-f(x)}{h} = \frac{\cos(x+h)-\cos x}{h} = \frac{-2\sin\left(x+\frac{h}{2}\right)\sinh/2}{h}$$

Since $\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h \to 0} \left[-\sin\left(x+\frac{h}{2}\right)\frac{\sin\frac{h}{2}}{\frac{h}{2}}\right]$
$$= -\lim_{h \to 0} \sin\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin h/2}{h/2}$$

Similarly other functions are define.

- $\frac{d}{dx}(\tan x) = \sec^2 x$ $\frac{d}{dx}(\operatorname{cosec} x) = -\operatorname{cosec} x \cdot \cot x$ (iii) (iv) (v) $\frac{d}{dx}(\sec x) = \sec x \tan x$
- (vi) $\frac{d}{dx}(\cot x) = -\cos ec^2 x$

MOST PROBABLE QUESTIONS:

(1) find the derivative of following function

(i)
$$Y=x^{2} \tan x$$

 $Ans:\frac{d}{dx}(y) = \frac{d}{dx}(x^{2} \tan x) = x^{2}.\frac{d}{dx}(\tan x) + \tan x.\frac{d}{dx}(x^{2}) = x^{2}.sec^{2}x + \tan x.2x$
(ii) $Y=\sqrt{1+\sin 2x}$

Ans:
$$y=\sqrt{1+\sin 2x} = \sqrt{(\cos x + \sin x)^2} = \cos x + \sin x$$

$$\frac{dy}{dx} = \frac{d}{dx}(\cos x + \sin x) = \frac{d}{dx}(\cos x) + \frac{d}{dx}(\sin x) = -\sin x + \cos x$$

- (2) find the derivative of the following functions
- (i) Cot x, sec x, cosec x
- (ii) X sin x
- (iii) 5 tan x+ b cot x
- (iv) X cos x+ sin x

(3) find the derivative of each of the following.

 $\sqrt{\cos x}$ (i)

- 1–tan x (ii)
- $1 + \tan x$ $\tan x \cos x$ (iii) sin *x.cos x*
- sec^2 (iv)
- $x^{2\frac{1}{x\log_2 e} + \log_2 x.2x + \sec x.\tan x}$ (i)

(ii)
$$\frac{-2\cos x}{(1+x)^2}$$

 $(1+sin)^2$ (11)

Topic : DERIVATIVE OF EXPONENTIAL FUNCTIONS

DESCRIPTION :

The derivative of exponential function are denoted by e^x or a^x .

The exponential functions are important point in the derivation form. Which is denoted by

$$\frac{d}{dx}(a^x) = a^x \log_e a$$
 and $\frac{d}{dx}(e^x) = e^x$.

Here we define how to calculate the derivative of exponential function .

(i) Derivative of a^x Let $f(x) = a^x$, then $f(x + h) = a^{x+h}$ Thus $f(x + h) - f(x) = a^{x+h} - a^x = a^x(a^h - 1)$ Now $\frac{f(x+h)-f(x)}{h} = \frac{a^x(a^h-1)}{h}$ Proceeding the limit as h ends to 0, we have

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h}$$
$$\therefore [\lim_{h \to 0} \left(\frac{a^h - 1}{h}\right) = \log_e a]$$
$$\therefore f'(x) = a^x \log_e a$$

Similarly other is define.

MODEL QUESTIONS :

Find the derivative of the following function with respect to x.

(i)
$$\frac{d}{dx}(x^3 + e^x + \cot x) = \frac{d}{dx}(x^3) + \frac{d}{dx}(e^x) + \frac{d}{dx}(\cot x) = 3x^2 + e^x - \csc^2 x$$

(ii)
$$\frac{u}{dx}(\log_e x^3) = \frac{u}{dx}(3\log_e x) = 3.\frac{u}{dx}(\log_e x) = \frac{3}{x}$$

MOST PROBABLE QUESTIONS:

(1) find the derivative of the following function

(2)
$$\frac{3}{\sqrt[3]{x}} - \frac{5}{\cos x} + \log_e x + \frac{6}{\sin x}$$

(3) $3a^x$

(1) find the derivative of each of the function.

(i)
$$x^2 - 7$$

(ii) $\frac{1}{\sqrt{1-1}}(-\sin x)$

(iii) $a^{x} \cdot 2x + \sec x \cdot \tan x$ (iv) $\frac{a^{x}(x \ln a - 1) + b^{x}(1 - x \ln b)}{x^{2}}$

Topic: DERIVATIVE OF LOGARITHMIC FUNCTIONS

DESCRIPTION:

As the logarithmic function with base $a(a>0, a \neq 1)$ and exponential function with the same base form a pair of mutually inverse functions, the derivative of the logarithmic function can also be found be using the inverse function theorem.

First we should know the derivatives for the basic logarithmic functions.

(i)
$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$$
 (iii) $\frac{d}{dx}(\log_a x) = \frac{1}{x \log_a x}$
(ii) $\frac{d}{dx} \log_b x = \frac{1}{\ln(b) \cdot x}$

Let $f(x) = \log_a x \therefore f(x+h) = \log_a(x+h)$

$$\therefore f(x+h) - f(x) = \log_a(x+h) - \log_a x$$

$$=\log_{a}\left(\frac{x+h}{h}\right) = \log_{a}\left(1+\frac{h}{x}\right)$$

$$= \therefore \frac{f(x+h)-f(x)}{h} = \frac{1}{h}\log_{a}\left(1+\frac{h}{x}\right)$$

$$= \frac{1}{x} \cdot \frac{x}{h}\log_{a}\left(1+\frac{h}{x}\right) = \frac{1}{x} \cdot \log_{a}\left(1+\frac{h}{2}\right)^{\frac{x}{h}}$$

$$= \therefore \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = \frac{1}{x} \cdot \lim_{h \to 0}\left(1+\frac{h}{x}\right)^{\frac{x}{h}}$$

$$= \frac{1}{x} \cdot \log_{a}\lim_{h \to 0}\left(1+\frac{h}{x}\right)^{\frac{x}{h}}$$

$$= \frac{1}{x} \cdot \log_{a}\lim_{h \to 0}\left(1+\frac{h}{x}\right)^{\frac{x}{h}}$$

$$(ince \lim_{h \to 0}\left(1+\frac{h}{x}\right)^{\frac{x}{h}} = e]$$

Hence we can written as $\log_a e = \frac{1}{\log_e a}$ [since $\log_a e \cdot \log_e a = 1$]

Thus
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \log a}$$

MODEL QUESTIONS : find the derivative of the following problems

(1) Y=2 ln (3x²-1) Ans: let we put u=3x² - 1 then derivative of u is given by $U' = \frac{du}{dx} = 6x \text{ so the final answer is } \frac{dy}{dx} = 2\frac{u'}{u} = 2 \times \frac{6x}{3x^2 - 1} = \frac{12x}{3x^2 - 1}$ (2) Y=x(ln³ x) Ans: The notation $y=x(ln^3 x)$ means $y=x(ln x)^3$

This is the product of x and $(\ln x)^3$. so $\frac{dy}{dx} = x \frac{3(\ln x)^2}{x} + (\ln x)^3(1)$ =3(ln x)² + (ln x)³ =(ln x)²(3 + ln x)

MOST PROBABLE QUESTIONS:

find the derivative of the following functions

(1) $3 \ln xy + \sin y = x^2$

- (2) $y = (\sin x)^2$ by first taking logarithmic of each side of the equation .
- (3) $y = \ln(\cos x^2)$

find the derivative of the functions

(i)
$$y = \log_2 6x$$

(ii) $y = 3 \log_7 (x^2 + 1)$
(1) $Y = \ln \tan \frac{x}{y}$
(2) $Y = \ln (x + \sqrt{x^2 + a^2})$
(3) $Y = \ln (\frac{1}{\sqrt{1 - x^4}})$

Topic: DERIVAT IVE OF SOME STANDARD FUNCTIONS

DESCRIPTION:

We can algebraically find the derivative of all standard function. That is included exponential function ,trigonometric function, exponential function, logarithmic function and inverse trigonometric function.

Previously we discuss most of all types of derivative functions. Here we discuss the inverse trigonometry function. Lets discuss some standard formulas .

(1)
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

(2) $\frac{d}{dx}(a^x) = a^x \log_e a$
(3) $\frac{d}{dx}(\log_a x) =$
(4) $\frac{d}{dx}(e^x) =$
(5) $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$
(6) $\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$
(7) $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$
(8) $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$
(9) $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{\sqrt{x^2(\sqrt{x^2-1})}}$
(10) $\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{\sqrt{x^2(\sqrt{x^2-1})}}$

MODEL QUESTIONS: Find the derivative of following functions.

(1)
$$Y = \sin^{-1} 2x$$

Ans: $\frac{d}{dx} (\sin^{-1} 2x) = \frac{1}{\sqrt{1 - (2x)^2}} = \frac{1}{\sqrt{1 - 4x^2}}$
(2) $Y = \sin^{-1} [x\sqrt{1 - x} - \sqrt{x}\sqrt{1 - x^2}] \text{ find } \frac{dy}{dx}$
Ans: putting $x = \sin \theta$ and $\sqrt{x} = \sin \varphi$
We get $y = \sin^{-1} [\sin\theta \cos\varphi - \sin\varphi \cos\theta$
 $= \sin^{-1} [\sin(\theta - \varphi)] = (\theta - \varphi) = \sin^{-1} x - \sin^{-1} \sqrt{x}$
 $\therefore \frac{dy}{dx} = \frac{d}{dx} (\sin^{-1} x - \sin^{-1} \sqrt{x}) = \frac{d}{dx} (\sin^{-1} x) - \frac{d}{dx} (\sin^{-1} \sqrt{x})$
 $= [\frac{1}{\sqrt{1 - x^2}} - \frac{1}{2\sqrt{x} \cdot \sqrt{1 - x}}]$

MOST PROBABLE QUESTIONS:

find the derivative of the followings:

- (1) Y=tan⁻¹ \sqrt{x}
- (2) $Y = \cos^{-1}(\cot x)$
- (3) $Y = \cos^{-1}(\tan x)$

differentiate the following functions:

(1)
$$Y = \sqrt{\cot^{-1} \sqrt{x}}$$

(2) If
$$Y = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} find \frac{dy}{dx}$$

(3)
$$y = (\frac{1 - \cos x}{\sin x})$$

Find the derivative of the following functions

(1)
$$\tan^{-1}(\sqrt{\frac{1-\cos x}{1+\cos x}})$$

(2) $\tan^{-1}(\sec x + \tan x)$
(3) $\cos^{-1}(\sqrt{\frac{1+\cos x}{2}})$

Topic: DERIVATIVE OF COMPOSITE FUNCTION(CHAIN RULE)

DESCRIPTION:

We have been differentiating y, a function of x with respect to x. We also comes across since u when y is a function of 'u' and 'u' is a function of x that is y=f(u) and u=g(x) then y=f|g(x)| in this case we say y is a function of a function or y is a composite function. We shall now find in method of differentiating composite function.

(chain rule) if u is a function of y define by y=f(u) and u is a function of x define by u=g(x), then y is a function of x and $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Lets more describe about chain rule. Suppose that we have two functions f(x) and g(x) and they are both differentiable .

- (1) If we define $F(x) = (f \circ g)(x)$ then the derivative of F(x) is F'(x) = f'(g(x) g'(x))
- (2) If we have y=f(u) and u = g(x) then derivative of y is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ Corollary : if y=f(u), u=g(v) and v=h(x) then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{dy}{dv} \cdot \frac{dv}{dx}$. By using these formulas we solve the problems.

MODEL QUESTIONS : solve these problems by using the chain rule.

(1)
$$Y=(2x^3 - 1)^4 find \frac{dy}{dx}$$

Ans: let $u=2x^3 - 1 \therefore y = u^4$ then $\frac{dy}{du} = 4u^3$ and $\frac{du}{dx} = 6x^2$
By chain rule, $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 4u^3 \cdot 6x^2 = 24x^2(2x^3 - 1)^3$.
(2) $Y=\sqrt{ax^2 + bx + c}$
Ans: let $u=ax^2 + bx + c$

then y= \sqrt{u} then $\frac{dy}{du} = \frac{d}{du}(\sqrt{u}) = \frac{1}{2\sqrt{u}}$

and
$$\frac{du}{dx} = \frac{d}{dx}(ax^2 + bx + c) = a.2x + b.1 + 0$$

=2ax+b

By chain rule $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2\sqrt{u}} \cdot (2ax + b) = \frac{2ax+b}{2\sqrt{ax^2+bx+c}}$

MOST PROBABILITY QUESTIONS: find $\frac{dy}{dx}$

(1)
$$y = \sqrt{\frac{1 - \tan x}{1 + \tan x}}$$

(2) $y = \frac{1}{(x^3 + \sin x)^2}$
(3) $y = \ln(\sqrt{x} + 1)$

(1)
$$y = (\frac{7x}{1})^3$$
 find $\frac{dy}{dy}$

- (1) $y = (\frac{7x}{x^2+1})^3 find \frac{dy}{dx}$ (2) if $f(x) = \sin^3 x$, find f'(x)
- (3) find the derivative of $\sin x^0$ using chain rule to find the derivative of the following.

(1)
$$e^{\sin^2 x}$$

(2)
$$\sqrt{e^{\sqrt{x}}}$$

(3) Log(log x)

TOPIC: DERIVATIVE OFCOMPOSITE FUNCTION(CHAIN RULE)

DESCRIPTION:

Already we discuss chain rule in previous lecture now we discus some extra problem., We have been differentiating y, a function of x with respect to x. We also comes across since u when y is a function of 'u' and 'u' is a function of x that is y=f(u) and u=g(x) then y=f|g(x)| in this case we say y is a function of a function or y is a composite function. We shall now find in method of differentiating composite function.

(chain rule) if u is a function of y define by y=f(u) and u is a function of x define by u=g(x), then y is a function of x and $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Lets more describe about chain rule. Suppose that we have two functions f(x) and g(x) and they are both differentiable .

- (1) If we define $F(x) = (f \circ g)(x)$ then the derivative of F(x) is F'(x) = f'(g(x) g'(x))
- (2) If we have y=f(u) and u =g(x) then derivative of y is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$. Corollary :if y=f(u), u=g(v) and v=h(x) then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{dy}{dv} \cdot \frac{dv}{dx}$. By using these formulas we solve the problems.

MODEL QUESTIONS :

(1) Differentiate $sin^2 x^3 by$ using chain rule. Ans: Let $y=n^2$ and $u=sin x^3$ That is $y=n^2$, u=sin v and $v=x^3$ Applying these chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$$

Now $\frac{dy}{du} = 2u, \frac{du}{dv} = \cos v$ and $\frac{dv}{dx} = 3x^2$

By putting these value to the above equation we get that $\frac{dy}{dx} = 2u \cdot \cos v \cdot 3x^2 = 6x^2 \sin x^3 \cos x^3$.

MOST PROBABLE QUESTIONS:

using chain rule to find the derivative of each of the following

(1) $[\tan (3x^2 + 5)]^8$ (2) $\sqrt{\tan x}$ (3) $(\frac{2 \tan x}{\tan x + \cos x})^2$ (1) $\log (\frac{1-x}{1+x})$ (2) $\log (x + \sqrt{x^2 + a})$ (3) $\frac{\log x}{1+x \log x}$

find the derivative of the following functions by using chain rule.

(1)
$$(3x^2 + 2x + 1)^8$$

- (2) $(x^2 + 3)^4$
- (3) Sin 6x + cos 7x

TOPIC : DERIVATIVE OF COMPOSITE FUNCTION (CHAIN RULE)

DESCRIPTION:

Already we discuss chain rule in previous lecture now we discus some extra problem., We have been differentiating y, a function of x with respect to x. We also comes across since u when y is a function of 'u' and 'u' is a function of x that is y=f(u) and u=g(x) then y=f|g(x)| in this case we say y is a function of a function or y is a composite function

We shall now find in method of differentiating composite function.

(chain rule) if u is a function of y define by y=f(u) and u is a function of x define by u=g(x) then y is a function of x and $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Lets more describe about chain rule. Suppose that we have two functions f(x) and g(x) and they are both differentiable .

- (1) If we define $F(x) = (f \circ g)(x)$ then the derivative of F(x) is F'(x) = f'(g(x) g'(x))
- (2) If we have y=f(u) and u = g(x) then derivative of y is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ Corollary : if y=f(u), u=g(v) and v=h(x) then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{dy}{dv} \cdot \frac{dv}{dx}$. By using these formulas we solve the problems.

MODEL QUESTIONS : differentiate each of the following with respect to x.

(1) $log x. e^{\sin x + x^3}$ Ans: let $y = \log x. e^{\sin x + x^3}$

By using product rule,

$$\frac{dy}{dx} = \log x \cdot \frac{d}{dx} (e^{\sin x + x^3}) + e^{\sin x + x^3} \cdot \frac{d}{dx} (\log x)$$
$$= \log x \cdot e^{\sin x + x^3} \cdot (\cos x + 3x^2) + e^{\sin x + x^3} \cdot \frac{1}{x}$$

$$= e^{\sin x + x^3} [(\cos x + 3x^2) \log x + \frac{1}{x}]$$

(2)
$$\log [\log (\log x)]$$

Ans: $\operatorname{let} y = \log [\log (\log x)]$
Then $\frac{dy}{dx} = \frac{1}{\log (\log x)} \cdot \frac{d}{dx} \log(\log x)$
 $= \frac{1}{\log (\log x)} \cdot \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$
 $= \frac{1}{\log (\log x) \cdot (\log x)} \cdot \frac{1}{x}$

(3) find the differential coefficient of sin [cos(tanx)]
Ans: let $y = \sin [\cos (\tan x)]$

$$\frac{dy}{dx} = \cos\left[\cos\left(\tan x\right)\right] \cdot \frac{d}{dx} \left[\cos(\tan x)\right]$$

 $= \cos \left[\cos \left(\tan x \right) \right] \left[-\sin \left(\tan x \right) \right] \cdot \frac{d}{dx} (\tan x)$

 $= -\cos[\cos(\tan x)[\sin(\tan x)] \cdot \sec^2 x$

MOST PROBABLE QUESTIONS:

using chain rule to find the derivative of each of the following.

- (1) $\log [(sinx)^{\cos x}]$
- (2) $\sqrt{\cot x}$
- (3) $(3x^4 2)$
- (4) $\sqrt{\sin x}$
- (5) $\log(\sin x)$
- (6) $cos^2 \sqrt{x}$ find the differential coefficient of
- (1) $x^3 sin^4 x (\log x)^5$
- (2) $\log \{x 3\sqrt{x^2 6x + 1}\}$

TOPIC : DIFFERENTIATION

DESCRIPTION: Let f(x) be a real function and a be any number . Then we define

(i) Right-Hand Derivative: $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ if it exits is called the right-hand derivative of f(x) at x=a and it

Is denoted by Rf'(a).

(ii) Left-Hand Derivative: $\lim_{h \to 0} \frac{f(a-h)-f(a)}{-h}$ if it exits, is called the left-hand derivative of f(x) at x=a and it is denoted by Lf'(a).

(Differentiability)

A function f(x) is said to be a differentiable at x=a, if Rf'(a)=Lf'(a). If, however Rf'(a) \neq Lf'(a),we say that f(x) is not differentiable at x=a.

(Relation between continuity and Differentiability)

Every differentiable function is continuous ,but every continuous function is not differentiable .

Proof: let f(x) be a differentiable function and let a be any real number in its domain.

Then,
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

Now,
$$\lim_{h \to 0} [f(a+h) - f(a)]$$

$$= \lim_{h \to 0} [\frac{f(a+h) - f(a)}{h} \times h]$$

$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \times \lim_{h \to 0} h$$

$$= f'(a) \times 0 = 0$$

Thus
$$\lim_{h \to 0} [f(a+h) - f(a)] = 0$$

$$\lim_{h \to 0} f(a+h) = f(a).$$

MODEL QUESTIONS : show that the function $f(x) = x^2$ is differentiable at x=1

Ans:
$$Rf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(1+h)^2 - (1)^2}{h}$
= $\lim_{h \to 0} \frac{1+h^2 + 2h - 1}{h} = \lim_{h \to 0} (h+2) = 2$

$$= \lim_{h \to 0} \frac{1+h^2 - 2h - 1}{-h} = \lim_{h \to 0} (-h + 2) = 2$$
$$\therefore Rf'(1) = Lf'(1) = 2$$

this show that f(x) is differentiable at x=1 and f'(1)=2

MOST PROBABLE QUESTIONS:

- (1) Show that f(x)=[x] is not differentiable at x=1
- (2) Show that the constant function is differentiable or not .
- (3) Show that f(x)=x is differentiable or not at x=1
- (4) Show that the function $f(x) = \{1 + x, if x \le 2 | 5 x, if x > 2\}$ is not differentiable at x=1.
- (5) Show that f(x) = |x| is differentiable or not at x=0.
- (6) Show that $f(x) = \log x$ is differentiable or not at x=0.

(7) Show that the function $f(x) = \left\{ x \sin \frac{1}{x}, when \ x \neq 0 \ \middle| \ 0, when \ x = 0 \right\}$ is continuous but not differentiable at x=0.

(8) Show that the function $f(x) = \left\{x^2 \cos \frac{1}{x}, when \ x \neq 0 \ \middle| \ 0, when \ x = 0\right\}$ is weather continuous or differentiable or both at x=0.

TOPIC : METHODE OF DIFFERENTIATION (parametric function)

DESCRIPTION:

Some times both x and y may be given as functions of another variable called a parameter.

For example ,any point (x, y) on the circle $x^2 + y^2 = r^2$ can be given by $x = r\cos t$, $y = r\sin t$, the variable quantity t is called parameter. The function consider these variable is called parametric function.

The term parameter is also used to mean a quantity which is invariable for a given curve but changes when we move from the curve of a given type to another. In such case the derivative is given in terms of the variable parameter .In such case the derivative is given in Sterms of the variable parameter

We shall now discuss the method of finding $\frac{dy}{dx}$ when x and y are function of t.

Let x = f(t) and y = g(t) corresponding to an increment δt in t, there are increments δx and δy in x and y respectively.

Then $x + \delta x = f(t + \delta t)$ and $y + \delta y = g(t + \delta t)$

$$\therefore \ \delta x = f(t + \delta t) - f(t)$$

And $\delta y = g(t + \delta t) - g(t)$ from these two equation combine we get

$$\frac{\delta y}{\delta x} = \frac{g(t+\delta t) - g(t)}{f(t+\delta t) - f(t)} = \frac{g(t+\delta t) - g(t)}{f(t+\delta t) - f(t)} \cdot \frac{\delta t}{\delta t}$$

 $= \frac{g(t+\delta t) - g(t)}{\delta t} \cdot \frac{\delta t}{f(t+\delta t) - f(t)}$

Now as $\delta t \rightarrow 0$, $\delta x \rightarrow 0$ and $\delta y \rightarrow 0$

$$\therefore \lim_{\delta t \to 0} \frac{g(t + \delta t) - g(t)}{\delta t} \div \lim_{\delta t \to 0} \frac{f(t + \delta t) - f(t)}{\delta t}$$

 $\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

MODEL QUESTIONS :

(1) If $x = at^2$ and y = 2bt, find $\frac{dy}{dx}$ Ans: Here $x = at^2$ and y = 2bt

$$\frac{dx}{dt} = 2at, \frac{dy}{dt} = 2b \text{ then } \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{2b}{2at} = \frac{b}{at}.$$
(2) If $y = a \cos \theta$ and $x = a(\theta + \sin \theta)$, find $\frac{dy}{dx}$
Ans: $y = a \cos \theta$ and $x = a(\theta + \sin \theta)$
 $\frac{dy}{d\theta} = -a \sin \theta$, and $\frac{dx}{d\theta} = a(1 + \cos \theta)$
 $\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dy}$
 $= \frac{-a \sin \theta}{a(1 + \cos \theta)}$
 $= \frac{-2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} = -\tan \frac{\theta}{2}$

MOST PROBABLE QUESTIONS:

(1) Find the derivative of $x = a \sin^3 t$ and $y = b \cos^3 t$ (2) $x = \frac{2at}{1+t^2}$ and $y = \frac{2bt}{1-t^2}$ find the derivative. (3) Find the derivative of the function $x = \frac{1-t^2}{1+t^2}$ and $y = \frac{2t}{1+t^2}$ (4) $x = at^2$ and $y = at^3$ (5) $x = \frac{a(1-t)}{1+t^2}$ and $y = at(\frac{1-t^2}{1+t^2})$ (6) $x = a(\theta + \frac{1}{\theta})$ and $y = a(\theta - \frac{1}{\theta})$

TOPIC : DIFFERENTIATION OF PARAMETRIC FUNCTION

DESCRIPTION:

Some times both x and y may be given as functions of another variable called a parameter.

For example ,any point (x, y) on the circle $x^2 + y^2 = r^2$ can be given by $x = r\cos t$, $y = r\sin t$, the variable quantity t is called parameter. The function consider these variable is called parametric function.

The term parameter is also used to mean a quantity which is invariable for a given curve but changes when we move from the curve of a given type to another. In such case the derivative is given in terms of the variable parameter .In such case the derivative is given in terms of the variable parameter .

We shall now discuss the method of finding $\frac{dy}{dx}$ when x and y are function of t.

Let x = f(t) and y = g(t) corresponding to an increment δt in t, there are increments δx and δy in x and y respectively.

Then $x + \delta x = f(t + \delta t)$ and $y + \delta y = g(t + \delta t)$

$$\therefore \ \delta x = f(t + \delta t) - f(t)$$

And $\delta y = g(t + \delta t) - g(t)$ from these two equation combine we get

$$\frac{\delta y}{\delta x} = \frac{g(t+\delta t) - g(t)}{f(t+\delta t) - f(t)} = \frac{g(t+\delta t) - g(t)}{f(t+\delta t) - f(t)} \cdot \frac{\delta t}{\delta t}$$

 $= \frac{g(t + \delta t) - g(t)}{\delta t} \cdot \frac{\delta t}{f(t + \delta t) - f(t)}$

Now as $\delta t \rightarrow 0$, $\delta x \rightarrow 0$ and $\delta y \rightarrow 0$

$$\therefore \lim_{\delta t \to 0} \frac{g(t + \delta t) - g(t)}{\delta t} \div \lim_{\delta t \to 0} \frac{f(t + \delta t) - f(t)}{\delta t}$$
$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{dy}{dx/dt}$$

MODEL QUESTIONS :

(1) find
$$\frac{dy}{dx}$$
, $x = \theta + \sin \theta$, $y = 1 + \cos \theta$ at $\theta = \frac{\pi}{4}$
Ans: Here $x = \theta + \sin \theta$ then $\frac{dx}{d\theta} = 1 + \cos \theta$

Again
$$y = 1 + \cos \theta$$
 then $\frac{dy}{d\theta} = -\sin \theta$
$$\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} = \frac{-\sin \theta}{1 + \cos \theta}$$
$$\begin{bmatrix} \frac{dy}{dx} \end{bmatrix} at \ \theta = \frac{\pi}{4} = \frac{-\sin \frac{\pi}{4}}{1 + \cos \frac{\pi}{4}} = \frac{-\frac{1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}} = \frac{-1}{1 + \sqrt{2}}.$$

(2) Find $\frac{dy}{dx}$, if $x = 3 \cot t - 2 \cos^3 t$, $y = 3 \sin t - 2\sin^3 t$ Ans: Given $x = 3 \cot t - 2\cos^3 t$ Then $\frac{dx}{dt} = -3 \sin t - 3(\cos^2 t) \cdot (-\sin t)$ $= -3 \sin t + 6 \cos^2 t \cdot \sin t = 3 \sin t \cdot \cos 2t$ Again, $y = 3 \sin t - 2 \sin^3 t$ Then $\frac{dy}{dt} = 3 \cos t - 6 \sin^2 t \cdot \cos t$ $= 3 \cos t (1 - 2 \sin^2 t) = 3 \cos t \cdot \cos 2t$ $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{3 \cos t \cdot \cos 2t}{3 \sin t \cos 2t}$

MOST PROBABILITY QUESTIONS:

(1) Find
$$\frac{dy}{dx}$$
, if $sinx = \frac{2t}{1+t^2}$, $\tan y = \frac{2t}{1-t^2}$
(2) find $\frac{dy}{dx}$ where $y = x^4 \log x$
(3) What is the derivative of $x|x|at x = 2$
(4) $x = a(\theta + sin\theta)$ and $y = a(1 - \cos\theta)$
(5) $x = \frac{at^2}{1+t^2}$ and $y = \frac{at^3}{1+t^2}$
(6) $x = a\sqrt{\frac{t^2-1}{t^2+1}}$ and $y = at\sqrt{\frac{t^2-1}{t^2+1}}$

TOPIC : DIFFERENTIATION OF FUNCTION WITH RESPECT TO FUNCTION

DESCRIPTION: IF Y = f(X) is differentiable , then the derivative of y with respect to x is

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If *f* and *g* are differentiable functions of x and if $\frac{df}{dg} = \frac{\frac{df}{dx}}{\frac{dg}{dx}} = \frac{f'(x)}{g'(x)}$

The understanding of the differentiation of the function with respect to a function IF Y = f(X) is differentiable , then the derivative of y with respect to x is

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If f and g are differentiable functions of x and if $\frac{df}{dg} = \frac{\frac{df}{dx}}{\frac{dg}{dx}} = \frac{f'(x)}{g'(x)}$
Which is same as the definition

Which is same as the definition.

Suppose we have two differentiable functions given by y = f(x) and z = g(x). To find the derivative of y with respect to z .we regard x as a parameter and find

$$\frac{dy}{dx} = f'(x)$$
, and $\frac{dz}{dx} = g'(x)$

i.e. $\frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{f'(x)}{g'(x)}$

MODEL QUESTIONS :

(1) Differentiate
$$\tan^{-1} x$$
 w.r.t $\tan^{-1} \sqrt{1 + x^2}$.
Ans: Let $y = \tan^{-1} x$ and $z = \tan^{-1} \sqrt{1 + x^2}$
 $\therefore \frac{dy}{dx} = \frac{1}{1 + x^2}, \frac{dz}{dx} = \frac{2x}{2(1 + 1 + x^2)\sqrt{1 + x^2}} = \frac{x}{(2x + x^2)\sqrt{1 + x^2}}$
 $\therefore \frac{dy}{dz} = \frac{dy}{dx}, \frac{dx}{dz}$
 $= \frac{1}{(1 + x^2)}, \frac{(2 + x^2)\sqrt{1 + x^2}}{x} = \frac{2 + x^2}{x\sqrt{1 + x^2}}$
(2) Differentiate $\sin^{-1}(\frac{2x}{1 + x^2})$ w.r.t $\cos^{-1}(\frac{1 - x^2}{1 + x^2})$
Ans: Set $x = \tan \theta$ in both the expressions
Let $y = \sin^{-1}(\frac{2xa\theta}{1 + tx^2})$ and $z = \cos^{-1}(\frac{1 - tan^2\theta}{1 + tan^2\theta})$
 $Y = \sin^{-1}(\frac{2tan\theta}{1 + tan^2\theta})$ and $z = \cos^{-1}(\frac{1 - tan^2\theta}{1 + tan^2\theta})$
 $Y = \sin^{-1}(sin2\theta)$ and $z = \cos^{-1}(cos2\theta)$
 $Y = 2\theta$ and $z = 2\theta$
 $Y = 2\tan^{-1} x$ and $z = 2\tan^{-1} x$
 $\frac{dy}{dx} = \frac{2}{1 + x^2}$ and $\frac{dz}{dx} = \frac{2}{1 + x^2}$

$$\frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{2}{(1+x^2)} \frac{(1+x^2)}{2} = 1.$$

MOST PROBABLE QUESTIONS:

- (1) Differentiate $sin^2 x$ w.r.t. $(\ln x)^2$.
- (2) Differentiate $e^{\tan x}$ w.r.t. sin x.
- (3) Differentiate $e^{\sin^{-1}}$ w.r.t. $e^{-\cos^{-1}x}$

TOPIC:DIFFERENTIATION WITH RESPECT TO A FUNCTION

DESCRIPTION: IF Y = f(X) is differentiable, then the derivative of y with respect to x is

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If *f* and *g* are differentiable functions of x and if $\frac{df}{dg} = \frac{\frac{df}{dx}}{\frac{dg}{dx}} = \frac{f'(x)}{g'(x)}$

The understanding of the differentiation of the function with respect to a function IF Y = f(X) is differentiable , then the derivative of y with respect to x is

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If *f* and *g* are differentiable functions of x and if $\frac{df}{dg} = \frac{\frac{df}{dx}}{\frac{dg}{dx}} = \frac{f'(x)}{g'(x)}$

Which is same as the definition.

Suppose we have two differentiable functions given by y = f(x) and z = g(x). To find the derivative of y with respect to z .we regard x as a parameter and find

$$\frac{dy}{dx} = f'(x)$$
, and $\frac{dz}{dx} = g'(x)$

i.e. $\frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{f'(x)}{g'(x)}$

MODEL QUESTION:

(1) Differentiate
$$\tan^{-1} x \ w.r.t \ \cos^{-1} x$$

Ans : let $y = \tan^{-1} x$ and $z = \cos^{-1} x$
We have to find $\frac{dy}{dz}$. Now
 $\frac{dy}{dx} = \frac{1}{1+x^2}$ and $\frac{dz}{dx} = \frac{-1}{\sqrt{1-x^2}}$
 $\therefore \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{-\sqrt{1-x^2}}{1+x^2}$

(2) Differentiate $e^{\sin x} w. r. t \cos x$

Ans: let
$$y = e^{\sin x}$$
 and $z = \cos x$
We have to find $\frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = e^{\sin x} \cdot \cos x \times \frac{-1}{\sin x} = -e^{\sin x} \cdot \cot x$

(3) Differentiate
$$\frac{1-\cos x}{1+\cos x} w. r. t \frac{1-\sin x}{1+\sin x}$$

Ans: let $y = \frac{1-\cos x}{1+\cos x}$ and $z = \frac{1-\sin x}{1+\sin x}$
Now, $\frac{dy}{dx} = \frac{\sin x(1+\cos x)+\sin x(1-\cos x)}{(1+\cos x)^2}$
 $= \frac{\sin x+\sin x \cos x+\sin x(1-\cos x)}{(1+\cos x)^2} = \frac{2\sin x}{(1+\cos x)^2}$
 $\frac{dz}{dx} = \frac{-\cos(1+\sin x)-\cos x(1-\sin x)}{(1+\sin x)^2} = \frac{-2\cos x}{(1+\sin x)^2}$

$$\therefore \ \frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dx}{dz}$$

$$\frac{2\sin x}{(1+\sin x)^2} \cdot \frac{(1+\sin x)^2}{(-2\cos x)} = -\tan x \ \frac{(1+\sin x)^2}{(1+\cos x)^2}$$

MOST PROBABLE QUESTIONS:

- (1) Differentiate \sqrt{x} with respect to x^2 .
- (2) Differentiate sin x w.r.t cos x.

(3) Differentiate
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 w.r.t $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$

(4) Differentiate $(\frac{\tan^{-1}x}{1+\tan^{-1}x})$ w.r.t $\tan^{-1}x$. (5) Differentiate $\tan^{-1}(\frac{2x}{1-x^2})$ w.r.t $\sin^{-1}(\frac{2^x}{1+x^2})$.

(5) Differentiate
$$\tan^{-1}\left(\frac{2x}{1-x^2}\right)$$
 w.r.t $\sin^{-1}\left(\frac{1}{1+x^2}\right)$
(6) Differentiate $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ w.r.t $\tan^{-1}\sqrt{\frac{1-x}{1+x}}$.

- (7) Differentiate $\ln(\sin x)$ w.r.t tan x.
- (8) Differentiate $e^{\sin^{-1}x}$ w.r.t $e^{-\cos^{-1}x}$.
- (9) Differentiate $\frac{1-cosx}{1+cosx}$ w.r.t $\frac{1-sinx}{1+sinx}$.

TOPIC:DIFFERENTIATION OF IMPLICITY FUNCTION

DESCRIPTION:

In mathematics ,an implicit equation is a relation of the form $R(x_{1,\ldots,x_n})=0$, where R is a function of several variable (often a polynomial). For example , the implicit equation of the u it circle is $x^2 + y^2$ -1=0.

Sometimes relationships cannot be represented by an explicit function. For example, $x^2 + y^2 = 1$.Implicithe differentiation helps us find dy/dx even for relationships like that. This is done using the chain rule, and viewing y as an implicit function of x. For example, according to the chain rule, the derivative of y^2 would be 2y.(dy/dx).

An implicit function is a function that is defined implicit by an implicit equation by associating one of the variables (the value) with the others (the arguments) Thus ,an implicit function for y is the context of the unit circle is defined implicity by $x^2+f(x)^2-1=0$. The implicit function is defines f as a function of x only if $-1 \le x \le 1$ and one considers only non-negative (or non-positive) values of the function.

MODEL QUESTION:

(1) Find
$$\frac{dy}{dx}$$
, when $x^{2+}y^{2} = 2axy$
Ans: given equation is $x^{2} + y^{2} = 2axy$
Differentiating w.r.t. x
 $\frac{d}{dx}(x^{2}) + \frac{d}{dx}(y)^{2} = 2a \frac{d}{dx}(xy)$
 $=> 2x + 2y \frac{dy}{dx} = 2a [x \cdot \frac{dy}{dx} + y]$
 $=>x+y\frac{dy}{dx} = ax \frac{dy}{dx} + ay => y \frac{dy}{dx} - ax \frac{dy}{dx} = ay - x$
 $=>(y-ax)\frac{dy}{dx} = ay - x => \frac{dy}{dx} = \frac{ay-x}{y-ax}.$

(2) Find $\frac{dy}{dx}$, $e^y \ln x + \ln y = 0$ Ans: Given equation is $e^y \ln x + \ln y = 0$ Differentiating w.r.t. x, we get

$$(e)^{y} \frac{d}{dx}(lnx) + lnx.\frac{d}{dx}(e^{y}) + x.\frac{d}{dx}(lny) + lny.\frac{d}{dx}(x) = 0$$
$$=> e^{y}.\frac{1}{x} + lnx.e^{y}.\frac{d}{dx} + x.\frac{1}{y}\frac{dy}{dx} + lny = 0$$
$$=> \frac{dy}{dx} \left[lnx.e^{y} + \frac{x}{y} \right] = -\left(\frac{e^{y}}{x} + lny\right)$$
$$=> \frac{dy}{dx} = -\frac{\left(\frac{e^{y} + xlny}{x}\right)}{\frac{ylnx.e^{y} + x}{y}} = -\frac{y(e^{y} + xlny)}{x(ylnxe^{y} + x)}$$

MOST PROBABLE QUESTIOS:

Find the derivative of y w.r.t x

(1) $ax^{2} + by^{2} = 25$ (2) $\frac{x^{2}}{9} + \frac{y^{2}}{16} = 1$ (3) $e^{xy} + ysinx = 1$

(4)
$$x^3 + y^3 = 3axy$$

$$(5) x^{y} = e^{x-y}$$

(6) y tan x- $y^2 cos x + 2x = 0$

(7) tan(x+y)+ tan(x-1)=0

(8)
$$x^{\frac{1}{2}}y^{-\frac{1}{2}} + x^{\frac{3}{2}}y^{-\frac{3}{2}} = 0$$

(9) $\ln \sqrt{x^2 + y^2} = \tan^{-1}(\frac{y}{x})$

TOPIC: DIFFERENTIATION OF IMPLICITY FUNCTION

DESCRIPTION :

In mathematics ,an implicit equation is a relation of the form $R(x_{1,\dots,x_n})=0$, where R is a function of several variable (often a polynomial). For example , the implicit equation of the u it circle is $x^2 + y^2 - 1=0$.

Sometimes relationships cannot be represented by an explicit function. For example, $x^2 + y^2 = 1$. Implicithe differentiation helps us find dy/dx even for relationships like that. This is done using the chain rule, and viewing y as an implicit function of x. For example, according to the chain rule, the derivative of y^2 would be 2y.(dy/dx).

An implicit function is a function that is defined implicit by an implicit equation by associating one of the variables (the value) with the others (the arguments) Thus ,an implicit function for y is the context of the unit circle is defined implicity by $x^2+f(x)^2-1=0$. The implicit function is defines f as a function of x only if $-1 \le x \le 1$ and one considers only non-negative (or non-positive) values of the function.

MODEL QUESTION:

(1) If
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
, find $\frac{dy}{dx}$.

Ans: Given that

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0 \dots \dots (1)$ Differentiating both sides of (i) with respect to x, we get : $2ax+2h\{x.\frac{dy}{dx}.y.1\} + 2by.\frac{dy}{dx} + 2g + 2f.\frac{dy}{dx} = 0$ Or $(2ax+2by+2g)+(2hx+2by+2f).\frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = -\left(\frac{ax + hy + g}{hx + by + f}\right).$ (1) If $\sqrt{1 - x^{2}} + \sqrt{1 - y^{2}} = a(x-y)$, prove that $\frac{dy}{dx} = \frac{\sqrt{1 - y^{2}}}{\sqrt{1 - x^{2}}}$ Ans: Given that $\sqrt{1 - x^{2}} + \sqrt{1 - y^{2}} = a(x - y)$ (1)

Putting x = sin θ and y=sin \emptyset , *it becomes* cos θ + cos \emptyset = $a(sin\theta - sin\emptyset)$

or
$$\frac{\cos\theta + \cos\phi}{\sin\theta - \sin\phi} = a$$

or $\frac{2\cos\left(\frac{\theta+\phi}{2}\right)\cos\left(\frac{\theta+\phi}{2}\right)}{2\cos\left(\frac{\theta+\phi}{2}\right) + \sin\left(\frac{\theta+\phi}{2}\right)} = a$
 $\therefore \cot\left(\frac{\theta-\phi}{2}\right) = a \text{ or } \theta - \phi = 2 \cot^{-1} a$
Thus $\sin^{-1} x - \sin^{-1} y = 2 \cot^{-1} a \dots \dots (ii)$
 $\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} = 0$
 $\therefore \frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$

MOST PROBABLE QUESTIONS:

- (1) Find the derivatives of y w.r.t. x in $x^2 + y^2$ +5xy=0
- (2) Find the derivative of y w.r.t. x in $sin^2x + 2\cos y + xy = 0$
- (3) Find $\frac{dy}{dx}$, where $\cos(x + y) = y \sin x$
- (4) find $\frac{dy}{dx}$, where $\sin(xy) + \frac{x}{y} = x^2 y$
- (5) find $\frac{dy}{dx}$, where $(\cos x)^y = (\sin y)^x$
- (6) Find $\frac{dy}{dx}$, where $y \cot x + y^3 \tan x + \sin x = 0$

TOPIC:DIFFERENTIATION OF LOGARITHMIC

DESCRIPTION :

IF we are required to find the differential coefficient of a function whose power is a function of x, the standard result obtained so far can not be applied directly .in such case we first take the logarithmic of the function and then differentiate . this method is called the logarithmic differentiation.

when the given function is a power of some expression or a product of expression , we take logarithmic on both sides and differentiate the implicity function so obtained .

now we discuss some rules, by use these things to solve the standard problems.

(1)
$$y = [f(x)]^{g(x)}$$

 $ans: \log y = \log [f(x)]^{g(x)}$
 $= g(x) \log f(x)$

$$(2) \quad y = [f(x).g(x)]$$

$$ans: \log y = \log[f(x).g(x)]$$

$$= \log f(x) + \log g(x)$$

(3)
$$y = [f(x)]^{g(x)} + [h(x)]^{v(x)}$$

 $ans: let \ u = [f(x)]^{g(x)}, v=[h(x)]^{v(x)}$
 $y = u + v$
 $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$

MODEL QUESTION:

(1) Find
$$\frac{dy}{dx}$$
, when $y = x^x$
Ans: $y = x^x$ taking logarithm on both sides, we get
 $\log y = \log x^x = x \log x$
Differentiating both sides with respect to x, we get
 $\frac{d}{dx}(\log y) = \frac{d}{dx}(x \log x) = x \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(x)$
 $= > \frac{1}{y} \frac{dy}{dx} = x \cdot \frac{1}{x} + \log x = 1 + \log x$
 $= > \frac{dy}{dx} = (1 + \log x)y = > \frac{dy}{dx} = x^x(1 + \log x)$
(2) Differentiate $(\tan x)^{secx}$

<u>Ans</u>: let $y = (\tan x)^{\sec x}$

Taking log on both sides

 $\log y = \log(\tan x)^{\sec x}$

On differentiation ,

 $\frac{1}{y} \cdot \frac{dy}{dx} = \sec x \cdot \frac{\sec^2 x}{\tan x} + \sec x \tan x \cdot \log (\tan x)$ $\frac{dy}{dx} = y [\frac{1}{\cos x} \cdot \frac{\cos x}{\sin x} \cdot \sec^2 x + \sec x \cdot \tan x \cdot \log (\tan x)]$ $= (\tan x)^{\sec x} [\csc x \cdot \sec^2 x + \sec x \cdot \tan x \log (\tan x)]$

MOST PROBABLE QUESTIONS: Differentiate

- (1) $(\sin x)^x$
- (2) $x^{\sin^{-1}x}$
- (3) $(\sin x)^{\log x}$
- (4) Find the derivative of $(\cos x)^{\ln x} + (\log x)^x$
- (5) Find the derivative of $(\sin x)^{\cos^{-1} x}$
- (6) Find the derivative of $(ax^2 + bx + c)^{\cos x}$

(7) If
$$\sqrt{1 - x^4} + \sqrt{1 - y^4} = k(x^2 - y^2)$$
 then show that $\frac{dy}{dx} = \frac{x\sqrt{1 - y^4}}{y\sqrt{1 - x^4}}$
(8) If $x^y = e^{x - y}$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$

(9) Differentiate
$$\frac{e^{x^2} \cdot \tan^{-1} x}{\sqrt{1+x^2}}$$

TOPIC:DIFFERENTIATION OF LOGARITHMIC

DESCRIPTION:

IF we are required to find the differential coefficient of a function whose power is a function of x, the standard result obtained so far can not be applied directly .in such case we first take the logarithmic of the function and then differentiate . this method is called the logarithmic differentiation.

when the given function is a power of some expression or a product of expression , we take logarithmic on both sides and differentiate the implicity function so obtained . here we discuss more problem related to logarithmic function.

now we discuss some rules, by use these things to solve the standard problems.

(4)
$$y = [f(x)]^{g(x)}$$

ans: $\log y = \log [f(x)]^{g(x)}$

$$= g(x) \cdot \log f(x)$$

(5)
$$y = [f(x).g(x)]$$

 $ans: \log y = \log[f(x).g(x)]$
 $= \log f(x) + \log g(x)$

(6)
$$y = [f(x)]^{g(x)} + [h(x)]^{v(x)}$$

 $ans: let \ u = [f(x)]^{g(x)}, v=[h(x)]^{v(x)}$
 $y = u + v$
 $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$

MODEL QUESTION:

(1) If
$$y = x^{x^{x}}$$
, find $\frac{dy}{dx}$
Ans: let $y = x^{x^{x}}$ then $\log y = x^{x} (\log x)$
On differentiating both sides with respect to x, we get :
 $\frac{1}{y} \cdot \frac{dy}{dx} = x^{x} \cdot \frac{1}{x} + (\log x) \cdot \frac{d}{dx} (x^{x})$
 $\therefore \frac{dy}{dx} = y[x^{x-1} + (\log x) \cdot x^{x} (1 + \log x)]$
 $[\therefore u = x^{x} => \log u = x \log x$
 $\Rightarrow \frac{1}{u} \cdot \frac{du}{dx} = (x \cdot \frac{1}{x} + (\log x \cdot 1) => \frac{du}{dx} = u(1 + \log x) = x^{x} (1 + \log x)]$
hence, $\frac{dy}{dx} = x^{x^{x}} [x^{x-1} + (\log x)x^{x} (1 + \log x)]$

(2) Differentiate $\tan x \tan 2x \tan 3x \tan 4x$

Ans:

Let $y = \tan x \tan 2x \tan 3x \tan 4x$

Then, $\log y = \log (\tan x) + \log (\tan 2x) + \log (\tan 3x) + \log (\tan 4x)$ $\frac{1}{y} \cdot \frac{dy}{dx} = \{\frac{\sec^2 x}{\tan x} + \frac{2\sec^2 2x}{\tan 2x} + \frac{3\sec^3 3x}{\tan 3x} + \frac{4\sec^4 4x}{\tan 4x}\}$ $\therefore \frac{dy}{dx} = y[\frac{1}{\sin x \cos x} + \frac{2}{\sin 2x \cos 2x} + \frac{3}{\sin 3x \cos 3x} + \frac{4}{\sin 4x \cos 4x}]$ $= y[\frac{2}{\sin 2x} + \frac{4}{\sin 4x} + \frac{6}{\sin 6x} + \frac{8}{\sin 8x}]$

= $[2 \tan x \tan 2x \tan 3x \tan 4x] \times [cosec 2x + 2 cosec 4x + 3 cosec 6x + 4 cosec 8x]$

MOST PROBABLE QUESTIONS: Differentiate

(1) x^{x} (2) $(\ln x)^{x}$ (3) $x^{x^{2}}$ (4) $x^{\ln x}$ (5) $x^{\tan x} + \cos x^{\sin x}$ (6) $\sqrt{x(x+1)(x+2)}$ (7) $x^{\sin x} + \tan x^{x}$ (8) if $y = (\sqrt{x}^{\sqrt{x}^{\sqrt{x}}})$, prove that $(\frac{dy}{dx}) = \frac{y^{2}}{(2-y\log x)}$ (9) if $y = x^{x^{x^{\dots,\infty}}}$, prove that $\frac{dy}{dx} = \frac{y^{2}}{x(1-y\log x)}$ (10) if $y = \sqrt{\sin x + \sqrt{\sin x + \cdots \infty}}$, prove that $\frac{dy}{dx} = \frac{\cos x}{(2y-1)}$

TOPIC: APPLICATION OF DERIVATIVE (Successive differentiation (second order)

DESCRIPTION:

Let f(x) be a function, differentiable on an open interval (a,b). then we know f'(x) exit at each $x \in (a, b)$. The correspondence $x \to f'(x), x \in (a, b)$ is a function in its own right. This new function is denoted by f'(x) and is called derivative of f(x).

If the derivative f'(x) of a function f(x) is itself differentiable then the derivative of f'(x) is called the second order derivative of f(x) and is denoted by f''(x).

If y = f(x) then $\frac{dy}{dx}$, the derivative of y w. r. t x, is itself, in general, a function of x and can be differentiable again. To fix up the idea, we shall call $\frac{dy}{dx}$ as the first order derivative of y with respect to x and the derivative of $\frac{dy}{dx}$ w.r.t x as second order derivative of y w.r.t x and will denoted by $\frac{d^2y}{dx^2}$ similarly the higher order derivative is denoted by $\frac{d^ny}{dx^n}$.

If y = f(x) then the order alternative notation for $\frac{dy}{dx}, \frac{d^2x}{dx^2}, \dots, \frac{d^nx}{dx^n}$. that is also denoted by f'(x), $f''(x), \dots, f^n(x)$. Which is denoted by f_1, f_2, \dots, f_n .

MODEL QUESTION:

(1) If
$$x = at^2$$
, $y = 2$ at find $\frac{d^2y}{dx^2}$
Ans: Given $x = at^2$, $y = 2at$
 $\frac{dx}{dt} = 2at$, $\frac{dy}{dt} = 2a$, $\therefore \frac{dy}{dx} = \frac{dy}{dt}$. $\frac{dt}{dx} = 2a$. $\frac{1}{2at} = \frac{1}{t}$
 $\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{1}{t}\right) = \frac{d}{dt}\left(\frac{1}{t}\right)$. $\frac{dt}{dx} = -\frac{1}{t^2} \cdot \frac{1}{2at} = -\frac{1}{2at^3}$

(2) If $y = \tan^{-1} x$, prove that $(1 + x^2)y_2 + 2xy_1 = 0$ Ans: Given $y = \tan^{-1} x$, $y_1 = \frac{1}{1+x^2}$

 $=>(1+x^2)y_1=1$

Again differentiating w.r.t. x

- $\Rightarrow (1+x^2) \cdot \frac{d}{dx} (y_1) + y_1 \frac{d}{dx} (1+x^2) = 0$ $\Rightarrow (1+x^2) y_2 + y_1 \cdot 2x = 0$ $\Rightarrow (1+x^2) y_2 + 2x y_1 = 0$
- (3) If y = Acosx+B sin nx then show that $\frac{d^2y}{dx^2} + n^2y = 0$ Ans: Given Acos nx + B sin nx

$$\frac{dy}{dx} = -A\sin nx \cdot n + B\cos nx \cdot n$$

$$\frac{d^2y}{dx^2} = -An.\cos nx.n - Bn.\sin nx.n = -n^2(A\cos nx + B\sin nx)$$

 $\frac{d^2y}{dx^2} = -ny^2 \Rightarrow \frac{d^2y}{dx^2} + n^2y = 0$

MOST PROBABLE QUESTIONS:

- (1) What is the slope of the curve y = sin x at $x = \frac{\pi}{6}$
- (2) If $y = x \sin x$, what is y_1 , at x = 0
- (3) Find the 2^{nd} derivative of the function $\cos 2x$.
- (4) If x= 2 cos t cos 2t ,y=2sint -sin2t, find $\frac{d^2y}{dx^2}$
- (5) If $x = a(\theta sin\theta)$, $y = a(1 + cos\theta)$, find $\frac{dy}{dx}, \frac{d^2y}{dx^2}$
- (6) If y= a sin 2x + b cos 2x , show that $\frac{d^2y}{dx^2}$ +4y=0
- (7) If y= sin (sin x) prove that $\frac{d^2y}{dx^2} + tanx\frac{dy}{dx} + ycos^2x = 0$
- (8) If Y = A cos nx +b sin nx then show that $\frac{d^2y}{dx^2} + n^2y = 0$.
- (9) If $y = (\sin^{-1} x)^2$, show that $(1-x^2)y_2 xy_1 2 = 0$.

TOPIC: PARTIAL DIFFERENTIAL EQUATION (Function of two variables second order)

DESCRIPTION: So far we have studied about derivatives of function of a single variable i.e y=(x)

 $\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x} = f'(x), \text{ in that case if a dependent variable is a function of single independent variable .in order to find the derivative of a function of two variables the following procedure is adopted$

If a dependent variable is a function of two or more independent variables, in that case partial derivatives exists i.e z=f(x,y). The function is differentiated with respect to one of the independent variables while other is treated as constant.

Consider a function of two independent variables x and y. Let z=f(x,y) If the variable x under goes a change δx .let the variable y remains constant, then z undergoes a change δz

$$\delta z = f(x + \delta x, y) - f(x, y)$$

We say that z possess partial derivative w.r.t. x and denoted by

$$\frac{\partial z}{\partial x} = \lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x} = \frac{\partial f}{\partial x} = f_x$$

Similarly z possesses partial derivative w.r.t. y and denoted by

$$\frac{\partial z}{\partial y} = \lim_{\delta y \to 0} \frac{f(x, y + \delta y) - f(x, y)}{\delta y} = \frac{\partial f}{\partial y} = f_y$$

Let z=f(x,y) be a function of two variables. Then $\frac{\partial z}{\partial x} and \quad \frac{\partial z}{\partial y} are \ themselves \ functions \ of \ two \ variables \ x \ and \ y, \\ \frac{\partial z}{\partial x} = p, \\ \frac{\partial z}{\partial y} = q$ $= \frac{\partial^2 f}{\partial y^2} = f_{yy} = t \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx} = r \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right)$ $\frac{\partial z^2}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = f_{xy} = s, \\ \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = f_{yx} = s$ In general $\left(\frac{\partial^2 z}{\partial xy} \right) \neq \frac{\partial^2 z}{\partial y \partial x}$.

MODEL QUESTION:

(1) If
$$z = x^2y + xy^2$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
Ans: $z = x^2y + xy^2$
 $\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(x^2y + xy^2) = \frac{\partial}{\partial x}(x^2y) + \frac{\partial}{\partial x}(xy^2) = 2xy + y^2$

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} (x^2 y + xy^2) = \frac{\partial}{\partial y} (x^2 y) + \frac{\partial}{\partial y} (xy^2) = x^2 + 2xy$$
(2) If $z=\sin\left(\frac{x}{y}\right) find \frac{\partial z}{\partial x} and \frac{\partial z}{\partial y}$
Ans: Given $z=\sin\left(\frac{x}{y}\right)$

$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \left\{\sin\left(\frac{x}{y}\right)\right\} = \cos\left(\frac{x}{y}\right) \frac{\partial}{\partial x} \left(\frac{x}{y}\right) = \frac{1}{y} \cos\left(\frac{x}{y}\right)$$

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left\{\sin\left(\frac{x}{y}\right)\right\} = \cos\left(\frac{x}{y}\right) \cdot \frac{\partial}{\partial y} \left(\frac{x}{y}\right) = \cos\left(\frac{x}{y}\right) \cdot \left(\frac{-x}{y^2}\right) = \frac{-x}{y^2} \cos\left(\frac{x}{y}\right)$$
(3) If $f(x, y) = \frac{2x - 3y}{x^2 + y^2}$, find $f_x(1, 2)$ and $f_y(1, 2)$.
Ans: $f(x, y) = \frac{2x - 3y}{x^2 + y^2}$. differentiate f w.r.t x, treating y as constant, we have
$$f_x(x, y) = \frac{(x^2 + y^2) \cdot 2 - (2x - 3y) \cdot 2x}{(x^2 + y^2)^2} = \frac{6xy - 2x^2 + 2y^2}{(x^2 + y^2)^2}$$

$$\therefore f_x(1, 2) = \frac{6 \cdot 1 \cdot 2 - 2 \cdot 1^2 + 2 \cdot 2^2}{(1^2 + 2^2)^2} = \frac{18}{25}$$
Differentiating f w.r.t y, treating x as constant, we have

 $Differentiating t w.r.t y, treating x as constant, ..., ..., f_y(x, y) = \frac{(x^2 + y^2).(-3) - (2x - 3y).2y}{(x^2 + y^2)^2} = \frac{3y^2 - 3x^2 - 4xy}{(x^2 + y^2)^2}$

$$\therefore f_y(1,2) = \frac{3 \cdot 2^2 - 3 \cdot 1^1 - 4 \cdot 1 \cdot 2}{(1^2 + 2^2)^2} = \frac{1}{25}$$

MOST PROBABLE QUESTIONS:

find f_x, f_y where f(x, y) is given by

(1) $\frac{x^2y + xy^2}{x + y}$

(2)
$$x^{y} + y^{x}$$

(3)
$$\sin^{-1}(\frac{x}{y})$$

(4) If $f(x, y, z) = e^{xyz}$ then find $xf_x + yf_y + zf_z$

(5) If
$$u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
 show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$

- (6) If $z = f\left(\frac{y}{x}\right)$, show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$
- (7) Find the degree of the homogeneous function $f(x,y) = x^4 + x^3y y^4$, by two different methods.

(8) If
$$z = \tan^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$$
 show that $x\frac{\partial z}{x} + \frac{\partial z}{\partial y} = \sin 2z$

(9) If
$$z = \sin^{-1}(\frac{xy}{x+y})$$
 show that $x\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \tan x$

TOPIC: PROBLEM BASED ON ABOVE

MOST PROBABLE QUESTIONS:

(1) IF
$$f(x, y) = e^{xy}$$
 what is $y \frac{\partial f}{\partial y} - x \frac{\partial f}{\partial x}$

- (2) If $u = \sin x \cos y$, what is $\frac{\partial u}{\partial y}$
- (3) What is the slope of the curve $y = \sin x \ at \ x = \frac{\pi}{6}$
- (4) What is the slope of the tangent to the curve y = sinx at $x = \frac{\pi}{3}$

(5) Find the slope of the curve
$$y = \frac{5}{2}x^2$$
 at $x = 2$

(6) Find the derivative of the following functions

(i)
$$(x^3 + e^x + 3^x + \cot x)$$

(ii)
$$(9x^2 + \frac{3}{x} + 5\sin x)$$

(iii)
$$(x^2 + \frac{4}{x^2} - \frac{2}{3}\tan x + 7 \log_e x + 6e$$

(iv)
$$\log_e x^3$$

- (7) Given $y = (2x^3 4)^5$, find $\frac{dy}{dx}$
- (8) Find the derivative of function

(i)
$$y = e^{\sin x}$$

- (ii) $y = \log(\sin x)$
- (9) Find the derivative of $\sin^{-1} 5x$
- (10) Find the derivative of $\tan^{-1}\sqrt{x}$

FIVE MARK QUESTION:

(1) Differentiate
$$\frac{(1-x)^{\frac{1}{2}}(2-x^{2})^{\frac{2}{3}}}{(3-x^{3})^{\frac{3}{4}}(4-x^{4})^{\frac{4}{5}}}$$
(2) Differentiate $e^{\sin^{-1}x} w.r.t e^{-\cos^{-1}x}$
(3) Differentiate $\ln(\sin x) w.r.t \tan x$
(4) If $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$, find $\frac{dy}{dx}$
(5) If $\sin \sin y = x \sin (a + y)$, prove that $\frac{dy}{dx} = \frac{\sin^{2}(a+y)}{\sin a}$
(6) Find the tangent line to $f(x) = 4\sqrt{2x} - 6e^{2-x}$ at x=2
(7) Find the derivative of $f(x) = \frac{1+e^{-2x}}{x+\tan(12x)}$ using chain rule.
(8) Find the derivative $h(u) = \tan(4 + 10u)$ by using chain rule.
(9) Find the derivative of $f(x) = (\sqrt{x} + 2x)(4x^{2} - 1)$